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Prote
ting Data Priva
y in Private Information RetrievalS
hemes�Yael Gertnery Yuval Ishai z Eyal Kushilevitzx Tal Malkin{Abstra
tPrivate Information Retrieval (PIR) s
hemes allow a user to retrieve the i-th bit of an n-bitdata string x, repli
ated in k � 2 databases (in the information-theoreti
 setting) or in k � 1databases (in the 
omputational setting), while keeping the value of i private. The main 
ostmeasure for su
h a s
heme is its 
ommuni
ation 
omplexity.In this paper we introdu
e a model of Symmetri
ally-Private Information Retrieval (SPIR),where the priva
y of the data, as well as the priva
y of the user, is guaranteed. That is, inevery invo
ation of a SPIR proto
ol, the user learns only a single physi
al bit of x and no otherinformation about the data. Previously known PIR s
hemes severely fail to meet this goal. Weshow how to transform PIR s
hemes into SPIR s
hemes (with information-theoreti
 priva
y),paying a 
onstant fa
tor in 
ommuni
ation 
omplexity. To this end, we introdu
e and utilizea new 
ryptographi
 primitive, 
alled 
onditional dis
losure of se
rets, whi
h we believe maybe a useful building blo
k for the design of other 
ryptographi
 proto
ols. In parti
ular, weget a k-database SPIR s
heme of 
omplexity O(n1=(2k�1)) for every 
onstant k � 2, and anO(log n)-database SPIR s
heme of 
omplexity O(log2 n � log logn). All our s
hemes requireonly a single round of intera
tion, and are resilient to any dishonest behavior of the user.These results also yield the �rst implementation of a distributed version of �n1�-OT (1-out-of-n oblivious transfer) with information-theoreti
 se
urity and sublinear 
ommuni
ation
omplexity.1 Introdu
tionPrivate Information Retrieval (PIR) s
hemes allow a user to retrieve information from a databasewhile maintaining its query private. In this model, the database is viewed as an n-bit string x outof whi
h the user retrieves the i-th bit xi, while giving the database no information about the indexi. The main 
ost measure for su
h s
hemes is their 
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was introdu
ed in [12℄, where it was shown that if there is only one 
opy of the database availablethen n bits of 
ommuni
ation are needed (for information-theoreti
 user-priva
y). However, if thereare k � 2 non-
ommuni
ating 
opies of the database, then there are solutions with mu
h better(sublinear) 
ommuni
ation 
omplexity.In this paper, we introdu
e the stronger model of Symmetri
ally Private Information Retrieval(SPIR), where priva
y of the data, as well as of the user, is guaranteed. That is, every invo
ation ofa SPIR s
heme, in addition to maintaining the user's priva
y, prevents the user (even a dishonestone) from obtaining any information other than a single physi
al bit of the data. Data priva
y isa natural and 
ru
ial requirement in many settings. For example, 
onsider a 
ommer
ial databasewhi
h sells information, su
h as sto
k information, to users, 
harging by the amount of data thatthe user retrieved. Here, both user-priva
y and data-priva
y are essential.The original PIR model was only 
on
erned with user-priva
y, without requiring any prote
tionof data-priva
y. Indeed, previous PIR s
hemes allow the user to obtain other physi
al bits of thedata (i.e., xj for j 6= i) or other information su
h as the ex
lusive-or of 
ertain subsets of thebits of x. A good example of where this happens is a single invo
ation of the best 2-databaseinformation-theoreti
 s
heme 
urrently known [12℄, from whi
h a user 
an systemati
ally retrieve�(n1=3) physi
al bits of data (see Se
tion 5, Example 2).To eÆ
iently realize SPIR s
hemes, we introdu
e and utilize a new 
ryptographi
 primitive,
alled \
onditional dis
losure of se
rets", whi
h may also be of independent interest as a buildingblo
k for designing more general 
ryptographi
 proto
ols. Informally, 
onditional dis
losure ofse
rets allows a set of players to dis
lose a se
ret to an external party Carol, subje
t to a given
ondition on their joint inputs. In the setting we 
onsider, Carol knows all the inputs held bythe players ex
ept for the se
ret to be 
onditionally dis
losed, so she knows whether the 
onditionholds and whether she will obtain the se
ret. Ea
h player on the other hand only sees its portionof the input and does not ne
essarily know whether Carol will obtain the se
ret. The proto
olinvolves only a unidire
tional 
ommuni
ation from the players to Carol. A simple example thatillustrates the use of \
onditional dis
losure of se
rets" is one in whi
h ea
h player has the input bitbi, indi
ating whether it agrees to reveal the se
ret s to Carol. Carol obtains the se
ret s subje
tto the 
ondition that the majority of the players agree to reveal the se
ret.This work is 
on
erned with the information-theoreti
 setting for SPIR. The te
hniques used inthis work 
an also be applied to 
omputational PIR s
hemes (
.f. [11, 23, 10℄), in whi
h the priva
yrequirement is relaxed to 
omputational priva
y (against 
omputationally bounded databases).However, in this 
omputational setting a better solution for realizing SPIR may be 
onstru
ted usingpseudo-random fun
tions [24, 14℄. We note that in addition to their theoreti
al signi�
an
e andtheir un
onditional se
urity, information theoreti
 s
hemes possess other advantages over known
omputational s
hemes; they are mu
h more time-eÆ
ient, and their 
ommuni
ation 
omplexityis typi
ally smaller for moderately sized data strings (even when their asymptoti
 
omplexity ishigher).Realizing SPIR involves a modi�
ation to the previous multi-database model. This is ne
essarybe
ause information-theoreti
 SPIR s
hemes, regardless of their 
omplexity, 
annot possibly bea
hieved in the original PIR setting, in whi
h the databases do not intera
t with ea
h other atall (see Appendix A.1). We thus use a minimal extension of the original setting: 
ontinue todisallow dire
t intera
tion between the databases, but grant them a

ess to a shared random string,unknown to the user. A similar kind of extension has been studied before in the 
ontexts of private
omputation [16, 18℄, non-intera
tive zero-knowledge [6℄ and other s
enarios. Here, this extension2
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is parti
ularly natural sin
e, even in the basi
 PIR setting, databases are required to maintainidenti
al 
opies of the same data string. (In the next subse
tion we dis
uss an alternative approa
hof using shared pseudo-random strings rather than sharing truly random strings.)1.1 Our ResultsWe 
onstru
t eÆ
ient SPIR s
hemes, with sublinear 
ommuni
ation 
omplexity, whi
h may be evenfurther improved if better PIR s
hemes are designed. More pre
isely, we present transformationsfrom PIR s
hemes to SPIR s
hemes, preserving the user's priva
y and guaranteeing data-priva
yas well, with a small penalty in the 
ommuni
ation 
omplexity. We give two types of redu
tions.A General Redu
tion We show that using any PIR s
heme it is possible to 
onstru
t a SPIRs
heme with the same number of rounds, a 
onstant fa
tor overhead in 
ommuni
ation 
omplexity,and linear (in n) shared randomness (per query). The resultant SPIR s
heme requires the use ofan additional auxiliary database, whi
h does not need to hold the original data (only the sharedrandom string). That is, we a
hieve:� (k+1)-database SPIR s
heme of 
ommuni
ation 
omplexity O(C(n)), for any k-database PIRs
heme of 
omplexity C(n).However, the additional database requirement may be 
ostly. In parti
ular, it does not allowto obtain an information-theoreti
 sublinear SPIR solution with only 2 databases. This 
ase isimportant, sin
e 2 is the minimal number of databases required for su
h a solution to exist. Indeed,via more spe
i�
 redu
tions we manage to avoid the additional database, and in parti
ular obtain agood solution for the 2-database 
ase. Moreover, these spe
i�
 redu
tions require signi�
antly lessshared randomness.Spe
i�
 Redu
tions We present redu
tions whi
h exploit spe
i�
 stru
tural properties of exist-ing PIR s
hemes to transform them into SPIR s
hemes whi
h use the same number of databasesas the underlying PIR s
heme, 
ommuni
ation 
omplexity whi
h is at most a small 
onstant fa
torover the PIR s
heme, and shared randomness 
omplexity (per query) whi
h is of the same orderof magnitude as the 
ommuni
ation 
omplexity. In parti
ular, extending s
hemes from [12, 1℄ weobtain:� k-database SPIR s
heme of 
omplexity O(n1=(2k�1)) for any 
onstant k � 2;� O(logn)-database SPIR s
heme of 
omplexity O(log2 n � log logn).Our s
hemes maintain the general paradigm of existing PIR s
hemes: all databases hold an identi
al
opy of x, and all proto
ols use a single queries-answers round.If one is willing to settle for 
omputational priva
y of the data (while still maintaining theinformation-theoreti
 priva
y of the user) then we 
an also 
onsider a slight variation of the model,by repla
ing the shared random strings with pseudo-random ones. More spe
i�
ally, the databasesmay share a short random seed from whi
h longer shared pseudo-random strings 
an be generated\on the 
y", without extra 
ommuni
ation [7, 28℄. This allows the databases to save storage spa
eand save on the amount of random bits they need to produ
e. We also remark that by using pseudo-random fun
tions [17℄ it is possible for the databases, in ea
h exe
ution of the proto
ol, to dire
tly3
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expand from the seed only the portion of the expanded string that is needed for this parti
ularexe
ution (without a
tually expanding the whole string).Our results, as of most 
ited PIR works, 
on
entrate mainly on the 
ase of 1-priva
y. The moregeneral notion of t-priva
y requires that the view of any 
ollusion of t databases is independentof the user's retrieval index i. A generalization of our SPIR proto
ols that satis�es this strongert-priva
y requirement is des
ribed later in the paper (Subse
tion 6.2).Note that we restri
t our attention to retrieval of single bits, rather than the retrieval of blo
ks
onsisting of multi-bit re
ords. In Subse
tion 6.1 we address blo
k retrieval, and show that forsingle-round s
hemes, 
on
entrating on single-bit re
ords does not 
ompromise generality. We thendes
ribe how to generalize our results for multi-round s
hemes as well, a
hieving SPIR for multi-bitre
ords.Finally, an interesting observation is that the SPIR problem may be viewed as a distributedversion of a known 
ryptographi
 primitive 
alled �n1�-Oblivious-Transfer (OT) [25, 15, 8, 9℄. An�n1�-OT proto
ol allows Bob to se
retly 
hoose one of n se
ret bits held by Ali
e, in a way that atthe end of the proto
ol Bob learns only a single bit of his 
hoi
e, and Ali
e learns nothing aboutBob's 
hoi
e. The results of our work give the �rst 1-round distributed implementations of �n1�-OTwith information-theoreti
 se
urity and sublinear 
ommuni
ation 
omplexity. Sin
e �n1�-OT is auseful tool for 
ryptographi
 proto
ol design, it is our hope that SPIR might also be found a usefultool for the design of 
ryptographi
 proto
ols.1.2 Related WorkPrivate information retrieval (with information-theoreti
 user priva
y) was introdu
ed in [12℄, wherethe s
hemes a
hieve 
ommuni
ation 
omplexity of O(n1=3) bits with 2 databases; O(n1=k) bits withk � 3 databases; and O(log2 n log logn) bits with k = O(logn) databases. In [1℄ the k-databaseupper bound is improved to O(n1=(2k�1)) for any 
onstant k (see [19℄ for improved dependen
e on kand generalization to t-priva
y).The 
omputational 
ounterpart of PIR (i.e., s
hemes where the user-priva
y is only with respe
tto polynomial-time databases, relying on 
ertain intra
tability assumptions) was �rst 
onsideredin [11℄; they show how to obtain s
hemes with 
ommuni
ation 
omplexity O(n
) (for any 
onstant
 > 0) for k=2 databases, assuming the existen
e of one-way fun
tions. The �rst 
omputational PIRs
heme for a single database was obtained in [23℄, a
hieving 
ommuni
ation 
omplexity O(n
) (forany 
onstant 
 > 0), under the quadrati
 residuosity assumption. A single-database 
omputationalPIR with polylogarithmi
 
ommuni
ation 
omplexity is presented in [10℄, under a new intra
tabilityassumption 
alled the �-hiding assumption. All the above s
hemes require only a single round ofqueries and answers. In [4℄ it is shown that a ne
essary assumption for any single database PIRwith less than n 
ommuni
ation 
omplexity, is the existen
e of one-way fun
tions. In [14℄ this resultis strengthened to show that oblivious transfer is ne
essary for PIR.Subsequent to our work, the 
omputational 
ounterpart of SPIR has been addressed in [24, 14℄,showing an eÆ
ient transformation from (single-database, low 
ommuni
ation) PIR to SPIR (in [24℄a transformation is 
onstru
ted assuming a 1-out-of-2 oblivious transfer primitive, and in [14℄ theassumption is removed by 
onstru
ting this primitive from PIR).4
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1.3 OrganizationIn Se
tion 2 we introdu
e notations and basi
 de�nitions. In Se
tion 3 we show a general trans-formation of PIR s
hemes into SPIR s
hemes, in
luding the introdu
tion of \
onditional dis
losureof se
rets" in Subse
tion 3.2. The following se
tions present spe
i�
 s
hemes, whi
h outperformthe ones obtained by applying the general transformation. Se
tion 4 in
ludes SPIR s
hemes whi
hrely on the user being honest. In Se
tion 5 we present s
hemes whi
h keep the data private fromany, possibly dishonest, user (with a minor extra 
ommuni
ation 
ost). Se
tion 6 
ontains exten-sions and generalization of our results: Subse
tion 6.1 generalizes the results for blo
k retrieval ofmulti-bit re
ords; Subse
tion 6.2 generalizes the results to s
hemes with higher levels of user-priva
y(that is, priva
y against 
oalitions of databases); and Subse
tion 6.3 outlines a generalization ofSPIR, 
alled private retrieval with 
osts, where our te
hniques and results 
an be used. Finally,Appendix A.1 
ontains a proof of the impossibility of SPIR in the usual PIR setting (without dire
tintera
tion between the databases or shared randomness), and Appendix A.2 gives a lower boundon the amount of shared randomness ne
essary for our general PIR to SPIR transformation.2 Preliminaries2.1 General Notations and De�nitionsThe following notations and 
onventions are used throughout the paper. Let [`℄ denote the setf1; 2; : : : ; `g and Z` def= f0; 1; : : : ; `� 1g denote the additive group of residues modulo `. For any twosets S; S 0, let S�S 0 denote the symmetri
 di�eren
e between S and S 0 (i.e., S�S 0 = (SnS 0)[(S 0nS)).For a set S � [`℄ let �S denote the 
hara
teristi
 ve
tor of S: an `-bit binary string whose j-th bitis equal to 1 i� j 2 S. To simplify notation, S � j and �j are used instead of S � fjg and �fjg,respe
tively. For any binary string � 2 f0; 1gd, let weight(�) denote the number of nonzero entriesin � (in parti
ular 0 � weight(�) � d). For any n-tuple y and index set B � [n℄, let yjB denotethe restri
tion of y to its entries with indi
es from B. By default, whenever referring to a random
hoi
e of an element from a �nite domain A, the asso
iated distribution is uniform over A, andthis random 
hoi
e is independent of all other random 
hoi
es. Finally, addition and multipli
ationoperations will sometimes be 
arried over a �nite �eld or group, as implied by the 
ontext.A Boolean fun
tion h : f0; 1gm!f0; 1g is 
alled monotone if for every A;B � [m℄ s.t. A � B,if h(�A) = 1 then also h(�B) = 1. A Boolean formula over the variables y1; : : : ; yn is a labeledbinary tree, whose leaves (representing inputs) are labeled by literals from fy1; y1; : : : ; yn; yng, andwhose internal nodes (representing boolean operators) are labeled by \^" or \_". Su
h a formula
omputes a Boolean fun
tion h : f0; 1gn ! f0; 1g in the natural way. A formula is said to bemonotone if all of its leaves are labeled by positive literals (whi
h implies that the fun
tion that theformula 
omputes is monotone). Finally, the size of a formula is measured by the number of leaves.2.2 PIR S
hemesLet k denote the number of databases, DBj (for 1 � j � k) denote the j-th database, x denotean n-bit data string whi
h is held by ea
h of the k databases, U denote the user, and i denote theposition (also 
alled index) of a data bit whi
h the user wants to retrieve (1 � i � n).5
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A PIR s
heme is a randomized proto
ol between U and DB1; : : : ;DBk, where U has an a

essto a random input �, unknown to the databases, and DB1; : : : ;DBk have a

ess to a shared randominput r, unknown to the user1. In ea
h round of the proto
ol messages are ex
hanged between theuser and the databases: queries are sent from the user to ea
h database, and answers are sent fromea
h database to the user.2 The view of the user in the proto
ol, denoted viewU(x; i; r; �), 
onsistsof its input i, its random input �, and all the answers re
eived from the k databases during theexe
ution of the proto
ol (with inputs x; i; r; �). Similarly, the view of the j-th database, denotedviewj(x; i; r; �), 
onsists of the data string x, the shared random input r, and all the queries sent fromthe user to DBj during the exe
ution of the proto
ol. At the end of the exe
ution, the user appliessome re
onstru
tion fun
tion 	 to its view and outputs the 
orresponding value 	(viewU(x; i; r; �)).A party (user or database) in a PIR s
heme is 
alled honest if it follows the proto
ol's spe
i�-
ation. When the user U intera
ts with (possibly dishonest) databases DB�1; : : : ;DB�k, we denotethe view of the j-th database by view�j(x; i; r; �). Similarly, when the k databases DB1; : : : ;DBkintera
t with a (possibly dishonest) user U� we denote the view of the user by view�U(x; i; r; �).A (1-private, information-theoreti
) PIR s
heme is a proto
ol as above, whi
h satis�es thefollowing two requirements:(1) 
orre
tness: When both the user and the k databases are honest, the user always re
onstru
tsthe data bit xi. That is, for every x; i; r; � as above,	(viewU(x; i; r; �)) = xi:(2) user-priva
y: The view of any single database is independent of the retrieval index i. Formally,for any (possibly dishonest) databases DB�1; : : : ;DB�k intera
ting with the (honest) user U , forany shared random input r, any data string x, any two retrieval indi
es 1 � i; i0 � n, anydatabase index 1 � j � k, and any view viewj of DB�j ,Pr� [view�j(x; i; r; �) = viewj℄ = Pr� [view�j(x; i0; r; �) = viewj℄ :It should be noted that the de�nition of PIR s
hemes in the literature does not allow for a sharedrandomness between the databases. However, in the 
ontext of PIR the de�nitions are equivalent.It is only in the SPIR 
ontext where the shared-randomness be
omes 
ru
ial.2.3 SPIR S
hemesA SPIR s
heme is a PIR s
heme su
h that in any invo
ation of the s
heme, the user 
annot learnany information whi
h doesn't follow from a single physi
al bit of data. Formally, a SPIR s
hemeshould satisfy, in addition to the 
orre
tness and the user-priva
y requirements, the following thirdrequirement:(3) data-priva
y: For any (possibly dishonest) user U� intera
ting with the honest databasesDB1; : : : ;DBk,and for any random input � held by U�, and any i0, there exists an index i, su
h that for everydata strings x; y satisfying xi = yi, and every view view of U�,Prr [view�U(x; i0; r; �) = view℄ = Prr [view�U(y; i0; r; �) = view℄ :1It is assumed, without loss of generality, that all databases are otherwise deterministi
.2As is the 
ase in most of the PIR literature, we will mostly be interested in single-round s
hemes. The followingde�nitions may take a slightly simpler form when the s
hemes are restri
ted to a single round.6
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Let us argue that the above de�nition yields the \intuitive notion" of data priva
y. The intuitivenotion that we want to 
apture is that the user 
annot learn any information about the data whi
hdoes not follow from a single physi
al bit. One may be tempted to require that for any user U�there exists a single index i, su
h that the view of U� is independent of the data string x givenxi. However, this (stronger) variant of the de�nition 
annot be satis�ed. To see that, 
onsider aSPIR s
heme S satisfying this latter requirement, and 
onsider a user U� whi
h starts by randomly
hoosing an index i, and then pro
eeds to run a

ording to S with retrieval index i. Clearly, there isno single index i su
h that the view of su
h user depends on xi alone. What our de�nition requiresis that, for every random string � held by the user, the user must (expli
itly or impli
itly) �x anindex i su
h that its view depends only on xi.3 Finally, note that an equivalent formulation of thedata-priva
y requirement is the following one: For any deterministi
 user U�, there exists an indexi, su
h that the user's view is independent of the data string x given xi.An honest-user SPIR s
heme is a PIR s
heme that satis�es the data-priva
y requirement withrespe
t to U , the honest (but 
urious) user, whi
h follows the s
heme's spe
i�
ation but may try todedu
e extra information from the 
ommuni
ation.Noti
e that the above formulation of the model is only 
on
erned with answering a single retrievalquery made by a single user. Multiple queries (possibly originating from di�erent users) maybe handled by independent repetitions of the single-query s
heme, where in ea
h invo
ation thedatabases use an independent sour
e of shared randomness (or a \fresh" portion of a single sharedrandom string).By default, the terms \PIR s
heme" and \SPIR s
heme" refer to 1-round, 1-query, informationtheoreti
ally private s
hemes.2.4 ComplexityThe main 
omplexity measure for PIR and SPIR s
hemes is their 
ommuni
ation 
omplexity. The
ommuni
ation 
omplexity of a k-database s
heme will be denoted (�k(n); �k(n)), where �k(n) isthe total number of query bits sent from the user to all k databases and �k(n) is the total numberof answer bits sent from all k databases to the user, when the data string is of size n. We sometimesuse a single parameter to measure the 
ommuni
ation 
omplexity of a given s
heme, whi
h is thetotal 
ommuni
ation 
omplexity �k(n) + �k(n).The shared randomness 
omplexity of a SPIR s
heme is de�ned as the entropy of the sharedrandom input r (whi
h equals to the length of the string r in the 
ase it is uniformly distributedover all strings of some �xed length).Finally, while the de�nitions in Subse
tions 2.2 and 2.3 do not address the aspe
t of 
omputa-tional eÆ
ien
y, all proto
ols 
onstru
ted in this work will also be 
omputationally eÆ
ient (thatis, polynomial in n).3Also note that if the user has some a-priori information regarding the data string x (e.g., that xj = xi) then theretrieval of xi, together with its a-priori information, may give it information about other bits of x; this is obviouslyunavoidable.
7
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3 A General Redu
tion from SPIR to PIRIn this se
tion we present a 
onstru
tion of a SPIR s
heme by using any PIR s
heme as a bla
k-box. This 
onstru
tion introdu
es an overhead of a single auxiliary database, a 
onstant fa
tor in
ommuni
ation 
omplexity, and a linear amount of shared randomness over the 
orresponding PIRs
heme. The auxiliary database need not hold a 
opy of the data string x; it only needs to havea

ess to the shared random string r.More spe
i�
ally, we present two general redu
tions. The �rst is with respe
t to an honestuser and 
osts only an additive logarithmi
 fa
tor in 
ommuni
ation 
omplexity (Subse
tion 3.1).The se
ond strengthens the �rst to deal with any user, possibly dishonest (Subse
tion 3.3). Thelatter is 
onstru
ted by utilizing a new 
ryptographi
 primitive, 
alled \
onditional dis
losure ofse
rets" (introdu
ed in Subse
tion 3.2), whi
h will also be used in later se
tions. We note that bothredu
tions (Theorems 1 and 3) are stated and proved for a single round PIR, but 
an be generalizedto apply to PIR s
hemes with any number of rounds.3.1 A General Redu
tion with Respe
t to Honest UsersTheorem 1. Let P be any 1-round k-database PIR s
heme with 
ommuni
ation 
omplexity(�k(n); �k(n)). Then, there exists a 1-round (k+1)-database honest-user SPIR s
heme SP with
ommuni
ation 
omplexity (�k(n) + (k+1)dlog2 ne; �k(n) + 1), and shared randomness 
omplexityn.Proof. To simplify notation, assume that the index i is taken from the set Zn = f0; 1; : : : ; n� 1g(rather than from [n℄). The s
heme SP involves k databases DB1; : : : ;DBk, 
orresponding todatabases of the original s
heme P, and an auxiliary database DB0. All databases share a randomstring r 2 f0; 1gn. The s
heme SP pro
eeds as follows:Queries: First the user pi
ks queries q1; : : : ; qk as spe
i�ed by the PIR s
heme P, and independentlypi
ks a random shift amount � 2 Zn. Then the user sends to ea
h DBj, for 1 � j � k, the same shiftamount �j = �, along with the query qj. Finally, the user sends the shifted index i0 def= (i��)modnto DB0.Answers: Ea
h database DBj, for 1 � j � k, lo
ally 
omputes a \virtual data string" x0 def= x �(r >> �), where � denotes bitwise ex
lusive-or, and r >> � denotes a 
y
li
 shift of the randomstring r by � pla
es to the right. Then, DBj answers the query qj as it would do in the originalPIR s
heme P with respe
t to the 
omputed string x0. Finally, the auxiliary database DB0 replieswith the single bit ri0 .Re
onstru
tion: The user re
onstru
ts xi by �rst re
onstru
ting from the answers ofDB1; : : : ;DBka bit bP a

ording to PIR s
heme P, and then 
omputing the ex
lusive-or of this bit with the bitri0 re
eived from DB0.By the 
orre
tness of P, we have bP = x0i. Therefore, the re
onstru
tion step of SP yieldsbP � ri0 = x0i � ri0 = (xi � ri0) � ri0 = xi, whi
h proves the 
orre
tness of SP . The user's priva
yfollows from the priva
y of P, and from the fa
t that ea
h of the additional queries � and i0 isuniformly distributed in Zn, independently of the P-queries q1; : : : ; qk. Finally, to show that thes
heme SP meets the data-priva
y requirement with respe
t to the honest user, we will use thefollowing, more general, 
laim. 8
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Claim 1. Let q = hi0; (q1;�1); (q2;�2); : : : ; (qk;�k)i be any (k+ 1)-tuple of queries (possibly, butnot ne
essarily, pi
ked by an honest user). Moreover, suppose that �1 = �2 = � � � = �k def= �.Then, the joint answers of DB0; : : : ;DBk to their 
orresponding queries in q are independent of xgiven xi0+� (where the probability spa
e is over the 
hoi
e of r, and where the sum i0 +� is takenmodulo n).Proof. Let x0 def= x�(r >> �). Note that x0 is the virtual data string 
omputed by ea
h databaseDBj, 1 � j � k, in the pro
ess of answering to its own query from q, i.e., qj. Now, 
onsider thejoint distribution of (x0; ri0). This distribution is uniform over the setf(y; b) : y 2 f0; 1gn; b 2 f0; 1g; yi0+� � b = xi0+�g ;thus depending only on xi0+�. Sin
e x0 determines the answers of DB1; : : : ;DBk given the query-tuple q, and sin
e ri0 is the answer of DB0, it follows that the joint distribution of all answers givensu
h query-tuple q depends on xi0+� alone.Claim 1 implies that the distribution of the view of an honest user, given that it holds input iand random input �, depends only on a single data bit, be
ause an honest user sets �1 = �2 =� � � = �k = �. This shows the data-priva
y of SP with respe
t to an honest user, and 
on
ludesthe proof of Theorem 1.Note that in the above s
heme SP , a dishonest user 
an either send invalid P-queries, or senddi�erent shifts �j to di�erent databases. However, by Claim 1, only the latter dishonest behavior
ould potentially give the user more information on the data. In other words, if the user sends thesame shifts to all databases, then data-priva
y will always be maintained, regardless of the validityof the other queries. Thus, to extend this s
heme for a dishonest user, it would suÆ
e to have thedatabases (ea
h of whi
h sees only a single �j) send their answers disguised so that the user learnsthe answers only if the 
ondition �1 = : : : = �k is satis�ed. To this end, we use the primitive of\
onditional dis
losure of se
rets", introdu
ed in the next subse
tion.A natural question regarding the above transformation is whether its shared randomness 
om-plexity may be redu
ed. A partial answer to this question is given in appendix A.2, where it isshown that for our transformation to be general (i.e. appli
able to any underlying PIR s
heme),the shared n-bit string used there must be uniformly distributed over f0; 1gn, namely linear sharedrandomness is required regardless of the 
ommuni
ation 
omplexity of the underlying PIR s
heme.Finally, we note that Claim 1 implies that if P is the trivial 1-database PIR s
heme in whi
hthe entire data string is being sent to the user, then the 2-database SPIR s
heme SP 
onstru
tedabove is resilient also against a dishonest user. We thus have:Corollary 1. There exists a 1-round, 2-database SPIR s
heme S�2 with 
ommuni
ation 
omplexity(2dlog2 ne; n + 1), and shared randomness 
omplexity n.While this s
heme S�2 is ineÆ
ient on its own, as it requires linear 
ommuni
ation 
omplexity,it will be used as a subproto
ol (with small data strings) in our later 
onstru
tions.3.2 Conditional Dis
losure of Se
retsIn this subse
tion we des
ribe and implement a new 
ryptographi
 primitive, 
alled 
onditionaldis
losure of se
rets (or CDS for short). This primitive is then used in the next subse
tion to obtaina general redu
tion from SPIR to PIR withstanding any user behavior.9
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Informally, the 
onditional dis
losure setting involves k players, ea
h holding some input, andan external party Carol, who knows all inputs held by the players. In addition, there is a se
ret swhi
h is known to at least one of the players but not to Carol. The goal is for the players to dis
losethe se
ret to Carol, subje
t to a given 
ondition on their joint input (namely if the 
ondition holds,Carol learns the se
ret, and if it doesn't she obtains no information about the se
ret). The modelallows all the players to have a

ess to a shared random string (hidden from Carol), and the only
ommuni
ation allowed is a single unidire
tional message sent from ea
h player to Carol. A simpleexample illustrating the use of CDS is one in whi
h ea
h player has an input bit bi 2 f0; 1g, andthe 
ondition for dis
losing the se
ret to Carol is that the majority of the players' bits are set to 1.A formal de�nition is given below. For 
onvenien
e, we start by de�ning a version where these
ret s to be dis
losed is known to all players (we 
all this version 
onditional dis
losure of a
ommon se
ret).Let h : f0; 1gn!f0; 1g be a �xed boolean fun
tion (the 
ondition); let B1; : : : ; Bk be a partitionof [n℄ into k sets (ea
h Bj � [n℄ is 
alled the j-th player input portion); and let SD be some se
retdomain (e.g., all binary strings of a parti
ular length). A 
onditional dis
losure of a 
ommon se
retfor the 
ondition h, input partition B1; : : : ; Bk, and se
ret domain SD, 
onsists of a set of k playersP1; : : : ; Pk (modeled as fun
tions) and (an external party) Carol, as follows. Let r denote a sharedrandom input of the players, drawn from some distribution R. For any �xed y = y1 : : : yn 2 f0; 1gn(the input), s 2 SD (the se
ret), and 1 � j � k, we de�ne a random variable mj = Pj(yjBj ; s; r)(the j-th player message), where the randomness is over the 
hoi
e of r. Then the following two
onditions must hold:1. 
orre
tness: For every y 2 f0; 1gn, if h(y) = 1, then 8s; r, Carol(y;m1; : : : ; mk) = s. Thatis, if the 
ondition holds, then Carol is always able to re
onstru
t the se
ret s from her inputand the messages she re
eived.2. se
re
y: For every y 2 f0; 1gn, if h(y) = 0, then for any s0; s1 2 SD the k-tuples of randomvariables Dms0j = Pj(yjBj ; s0; r)Ekj=1 and Dms1j = Pj(yjBj ; s1; r)Ekj=1 are identi
ally distributed(where the probability is over the 
hoi
e of r). That is, if the 
ondition does not hold, Carolobtains no information about the se
ret s (the messages re
eived by Carol are identi
allydistributed for any two possible se
rets s0 and s1).A similar version 
an be de�ned when the se
ret s is known to at least one of the players (notne
essarily to all of them). In this 
ase we let mj = Pj(yjBj ; r) for players Pj who do not hold s(their message is 
onstru
ted only based on their portion of the input and the shared randomness).We 
all this (more general) version 
onditional dis
losure of a se
ret.The 
ommuni
ation 
omplexity of a 
onditional dis
losure proto
ol is the maximal total size ofall messages sent by the players (over the 
hoi
es of r), and its shared randomness 
omplexity is theentropy of R.We note that the model of 
onditional dis
losure is similar to the non-intera
tive model of private
omputation from [16℄, whi
h is des
ribed in Subse
tion 4.2. Known results in that (in a sense moregeneral) model are suÆ
ient to yield some solutions to the 
onditional dis
losure problem. Forinstan
e, results of [16, 18℄ imply 
onditional dis
losure proto
ols with 
ommuni
ation whi
h isquadrati
 in the size of a bran
hing program or a formula des
ribing the 
ondition h (see Remark 2for dis
ussion). However, the solutions obtained via these general results are usually not eÆ
ient10
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enough for our purposes. Instead, we show below how to a
hieve mu
h more eÆ
ient solutions,whi
h use 
ommuni
ation at most linear in the size of h.3.2.1 Redu
tion to Generalized Se
ret SharingIn the following we show how to implement 
onditional dis
losure of se
rets under an arbitrary
ondition by redu
ing it to generalized se
ret sharing [5, 20℄ relative to a 
orresponding a

essstru
ture.Generalized se
ret sharing. The problem of generalized se
ret sharing is an extension of theusual notion of t-out-of-m se
ret sharing [26℄. Informally, a generalized se
ret sharing proto
ol is arandomized proto
ol for sharing a se
ret into m shares su
h that the se
ret 
an be re
onstru
tedfrom any quali�ed set of shares, whereas any 
ombination of an unquali�ed set of shares shouldgive no information about the se
ret. Formally, a generalized se
ret sharing s
heme with se
retdomain SD is de�ned by a triple (D; R; C), where D (the dealing fun
tion) maps a se
ret s 2 SDand a random input r into an m-tuple of shares hs1; : : : ; smi, R is the distribution from whi
h therandom input r is 
hosen, and C (the re
onstru
tion fun
tion) maps a set A � [m℄ and an jAj-tuple of shares into a re
onstru
ted se
ret s 2 SD. The 
olle
tion of quali�ed sets is spe
i�ed by amonotone Boolean fun
tion hM : f0; 1gm!f0; 1g, 
alled an a

ess stru
ture, where a set A � [m℄of shares is said to be quali�ed if hM(�A) = 1 and otherwise is said to be unquali�ed. The s
hemeS = (D; R; C) is said to be a generalized se
ret sharing s
heme realizing the a

ess stru
ture hM ifit satis�es the following two requirements: (1) 
orre
tness: for any quali�ed set A � [m℄, everyse
ret s 2 SD, and every random input r, the re
onstru
tion su

eeds; that is, C(A;D(s; r)jA) = s;and (2) se
re
y: for any unquali�ed set A � [m℄ and se
rets s1; s2 2 SD, the random variablesD(s1; r)jA and D(s2; r)jA are identi
ally distributed (where the probability is over the 
hoi
e of r,distributed a

ording to R). Finally, the share 
omplexity of S is the maximum total size of allshares in an m-tuple D(s; r), and its randomness 
omplexity is the entropy of R.Lemma 1. Let hM : f0; 1gm!f0; 1g be a monotone Boolean fun
tion. Let h : f0; 1gn!f0; 1gbe a Boolean fun
tion de�ned by h(y1; : : : ; yn) = hM(g1; : : : ; gm), where ea
h gi depends on a singlevariable yj; that is, gi 2 fy1; y1; : : : ; yn; yng for 1 � i � m (su
h h will be referred to as a proje
tionof hM ). Let S be a generalized se
ret sharing s
heme with se
ret domain SD realizing the a

essstru
ture hM , with share 
omplexity � and randomness 
omplexity 
. Then, for any partitionB1; : : : ; Bk among k players of the inputs to h, there exists a proto
ol P for dis
losing a 
ommonse
ret s 2 SD subje
t to the 
ondition h, with 
ommuni
ation 
omplexity � and shared randomness
omplexity 
.Proof. Re
all that the CDS proto
ol P involves players P1; : : : ; Pk ea
h holding a portionof the input y = y1; : : : ; yn (player Pj holds Bj) and the se
ret s 2 SD. The players wish toreveal their se
ret to Carol subje
t to the 
ondition h(y) = 1. We show how to 
onstru
t Pusing the generalized se
ret sharing s
heme S = (D; R; C) realizing the a

ess stru
ture hM , wherehM(g1; : : : ; gm) = h(y1; : : : ; yn)The proto
ol P uses a shared random string r distributed a

ording to R, and pro
eeds asfollows. First, ea
h player Pj evaluates D(s; r), generating an m-tuple of shares hs1; : : : ; smi (notethat all players generate the same shares, sin
e they use the same se
ret and the same random input11
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when evaluating D). Next, for ea
h i 2 [m℄, player Pj in
ludes the share si in the message sent toCarol if and only if the following two 
onditions hold: (1) gi is \owned" by Pj (i.e., gi is either yl oryl for some l 2 Bj); and (2) gi evaluates to 1. That is, the message sent to Carol by the player Pj
onsists of the restri
tion of the shares hs1; : : : ; smi to those whi
h satisfy the above two 
onditions.Observe that sin
e ea
h input variable yl is held by some player, Carol re
eives exa
tly thoseshares si for whi
h gi = 1. By this observation, if hM(g1; : : : ; gm) = 1 then Carol has exa
tly the sifor whi
h gi = 1, whi
h a

ording to the de�nition of generalized se
ret sharing is a quali�ed set ofshares, and 
an thus re
onstru
t the se
ret s (using the re
onstru
tion fun
tion C). On the otherhand, if hM(g1; : : : ; gm) = 0 then Carol re
eives an unquali�ed set of shares, and hen
e gains noinformation about s. To 
omplete the proof, re
all that hM(g1; : : : ; gm) = h(y1; : : : ; yn); thus, Carol
an re
onstru
t s whenever the 
ondition h(y) holds, and otherwise obtains no information on s.Finally, the shared randomness 
omplexity of P is the same as the randomness 
omplexity ofS, and the 
ommuni
ation 
omplexity of P is no larger than the share 
omplexity of S (sin
e ea
hshare is sent by at most one player).We now use Lemma 1 to obtain an upper bound on the 
omplexity of 
onditional dis
losure ofse
rets, depending on the size of a formula 
omputing the 
ondition. The proof of the followingtheorem will use a known result about the 
omplexity of generalized se
ret sharing.Fa
t 1. [5℄ Suppose that hM : f0; 1gm!f0; 1g 
an be 
omputed by a monotone Boolean formulaof size S. Then, there exists a generalized se
ret sharing s
heme realizing hM with SD = f0; 1g,whose 
ommuni
ation 
omplexity and shared randomness 
omplexity are bounded by S.Theorem 2. Suppose that h : f0; 1gn ! f0; 1g 
an be 
omputed by a Boolean formula of size S,and let SD = f0; 1g. Then, for every partition B1; : : : ; Bk of the inputs to h,1. there exists a proto
ol P for dis
losing a 
ommon se
ret bit s 2 SD (known to all players)subje
t to the 
ondition h, with 
ommuni
ation 
omplexity and shared randomness 
omplexitybounded by S.2. there exists a proto
ol P 0 for dis
losing a se
ret bit s 2 SD (known to at least one player)subje
t to the 
ondition h, with 
ommuni
ation 
omplexity and shared randomness 
omplexitybounded by S + 1.Proof. A proto
ol P for 
onditional dis
losure of a 
ommon se
ret bit s known to all playersis 
onstru
ted as follows. Let H be a Boolean formula over the variables y1; : : : ; yn 
omputing h,whose size is S. Repla
ing ea
h negative literal yj with a positive literal wj, we obtain a monotoneBoolean formula HM of size S 
omputing a monotone fun
tion hM(y1; : : : ; yn; w1; : : : ; wn). Notethat h is a proje
tion of hM , sin
e h(y1; : : : ; yn) = hM(y1; : : : ; yn; y1; : : : ; yn). Using Fa
t 1, it followsfrom Lemma 1 that the players 
an dis
lose the bit s subje
t to the 
ondition h using at most S
ommuni
ation bits and at most S shared random bits, whi
h 
ompletes the proof of the �rst partof the theorem.For the se
ond part, a proto
ol P 0 for 
onditional dis
losure of a se
ret bit s known to at least oneplayer, pro
eeds as follows. The players �rst 
onditionally dis
lose a shared random bit r0, known toall of them, subje
t to the 
ondition h. This is done using the proto
ol P des
ribed above. Finally,a single player holding s sends the bit s� r0 to Carol. Clearly, if Carol 
an re
onstru
t r0 then she
an also re
onstru
t s, and if she obtains no information on r0 then she 
an obtain no informationon s, and the theorem follows. 12
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Remark 1. Using best known general upper bounds on the 
omplexity of generalized se
retsharing [21℄, the result of Theorem 2 
an be strengthened to apply to any fun
tion h with a spanprogram over GF(2) of size S (see [21℄ for a de�nition of the span program model).3.2.2 Dire
t Constru
tions for Spe
ial CasesIn the sequel, the 
onditional dis
losure primitive will be used in our redu
tions for dealing withdishonest behavior of the user. These appli
ations of 
onditional dis
losure require only a sim-ple 
ondition (e.g., testing equality between inputs). Therefore, in the following we give dire
t
onstru
tions of 
onditional dis
losure proto
ols realizing these spe
i�
 
onditions. These dire
t
onstru
tions are more eÆ
ient than the ones obtained by a straightforward appli
ation of The-orem 2. We stress though that the more general results des
ribed above are still useful in other
ryptographi
 s
enarios, su
h as the one des
ribed in Subse
tion 6.3.The next lemma shows an eÆ
ient implementation of 
onditional dis
losure of se
rets, wherethe 
ondition tests whether the sum of k �eld elements equals 0. Later it will mostly be used withk = 2, to implement 
onditional dis
losure of se
rets where the 
ondition tests for equality betweentwo strings.Lemma 2. Let F be a �nite �eld (all arithmeti
 operations below are in this �eld). Suppose thatea
h of k players Pj holds an input yj 2 F , and that a se
ret s 2 F is known to at least one player.Then, there exists a proto
ol for dis
losing the se
ret s subje
t to the 
ondition \Pkj=1 yj = 0" inwhi
h ea
h player sends a single �eld element, and whose shared random string 
onsists of k random�eld elements.Proof. Assume without loss of generality that player Pk holds the se
ret s, and let r0; r1; :::; rk�1be independent random elements of F , shared by the parties. The proto
ol 
an then pro
eed asfollows:� Ea
h player Pj, 1 � j � k � 1, sends to Carol the single �eld element mj def= yjr0 + rj;� The player Pk sends to Carol mk def= s+ ykr0 �Pk�1j=1 rj.First, note that if all inputs yj add up to 0, then s 
an be re
onstru
ted as the sum of all messagesmj: kXj=1mj = k�1Xj=1(yjr0 + rj) + s + ykr0 � k�1Xj=1 rj = s+ r0 kXj=1 yj = s:We now show that if P yj 6= 0, the k-tuple of messages (m1; : : : ; mk) is uniformly distributed overF k independently of s. For any sequen
e of messages m1; : : : ; mk 2 F k, we de�ne its support as theset of all 
hoi
es r0; r1; : : : ; rk�1 whi
h make the players send this sequen
e of messages to Carol(when the inputs are y1; : : : ; yk and the se
ret is s). By the 
onstru
tion of the proto
ol, the support
onsists of exa
tly all r0; r1; : : : ; rk�1 satisfying the system of equationsy1r0 +r1 = m1y2r0 +r2 = m2...yk�1r0 +rk�1 = mk�1ykr0 �r1 : : : �rk�1 = mk � s13
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This is a system of k linear equations in the k variables r0; r1; : : : ; rk�1. When P yj 6= 0 the kequations are linearly independent, sin
e adding the �rst k � 1 equations to the last one yield atriangular system of equations. Therefore, any sequen
e of messages m1; : : : ; mk 2 F k has a supportwhi
h is a singleton, and in parti
ular all sequen
es have the same size support. This implies thatthe uniform distribution of the �eld elements r0; r1; : : : ; rk�1 indu
es a uniform distribution of themessages m1; : : : ; mk over F k, for any input tuple y1; : : : ; yk with nonzero sum and any se
ret s 2 F .Note that the above lemma outperforms the general 
onstru
tion of Theorem 2. Using thegeneral 
onstru
tion, the 
ommuni
ation and randomness required for dis
losing a single bit se
retis larger than the total size of k �eld elements (whi
h is a lower bound on the size of a formulaevaluating the 
ondition), whereas in the spe
i�
 
onstru
tion of Lemma 2 
ommuni
ation andrandomness of this size are suÆ
ient for the dis
losure of a longer se
ret, namely a �eld element.The following lemma shows that it is possible to further redu
e the 
ommuni
ation to be dominatedby the se
ret size, even when the se
ret is smaller than the inputs.Lemma 3. Suppose that ea
h of k players holds an input string4 yj 2 f0; 1g`, and a se
ret strings 2 f0; 1gm is known to at least one player. Then, there exists a proto
ol for dis
losing the se
ret ssubje
t to the 
ondition \Lkj=1 yj = 0`" in whi
h ea
h player sends a string of length m, and whoseshared randomness 
omplexity is k �max(`;m).Proof. For a �nite �eld F = GF(2w), we use a standard representation of �eld elements byw-bit strings, su
h that ea
h element of F is represented by the 
oeÆ
ient ve
tor of the polynomialasso
iated with it. (Re
all that an element of GF(2w) may be identi�ed with a polynomial overGF(2) of degree � w � 1, modulo some irredu
ible degree-w polynomial). Su
h a representationde�nes an isomorphism between the groups hF;+i and hf0; 1gw;�i.We now 
onsider two possible 
ases. If ` � m, then the proto
ol from the proof of Lemma 2
an be used as is, letting F = GF(2m), and asso
iating the se
ret s with the 
orresponding �eldelement and ea
h input string yj 2 f0; 1g` with the �eld element 
orresponding to its m-bit paddingyj0m�`.In the se
ond 
ase (` > m), we use the same proto
ol with F = GF(2`), ex
ept that ea
h �eldelement sent in the original proto
ol is proje
ted to the m leftmost bits of its representation; thatis, if mj is the �eld element originally sent by Pj and is represented by the string �1�2 � � ��`, thenthe message sent from Pj to Carol in the new proto
ol would be the m-bit pre�x �1�2 � � ��m. Akey observation is that, under the above representation, the proje
tion operator 
ommutes withthe �eld addition. Hen
e, the sum of all `-bit proje
tions sent in the new proto
ol is equal to theproje
tion of Pkj=1mj. It follows from the above observation and from the analysis in the proof ofLemma 2 that if the 
ondition \Lkj=1 yj = 0`" holds, then s 
an be re
onstru
ted as the ex
lusive-orof all messages. On the other hand, if the 
ondition does not hold, then the original k messagesare uniformly and independently distributed over F , from whi
h it follows that the proje
ted m-bitmessages are independently and uniformly distributed over f0; 1gm. This proves the 
orre
tnessand se
re
y of this proto
ol.Finally, sin
e in both 
ases ea
h player sends a message string of length m, the spe
i�ed
ommuni
ation bound is met, and sin
e in both 
ases the proto
ol of Lemma 2 is invoked withF = GF(2max(`;m)), the spe
i�ed shared randomness bound is met as well.4The lemma is formulated for binary strings, but 
an be generalized to strings over any �nite �eld.14
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In parti
ular, the result of Lemma 3 
an be applied with k = 2 for 
onditionally dis
losing ase
ret s subje
t to a 
ondition whi
h tests equality of strings held by two players. This proto
ol
learly outperforms any proto
ol obtainable via the general result of Theorem 2; indeed, sin
etesting equality between `-bit strings requires a formula of size �(`), the best proto
ol obtainablevia Theorem 2 would require �(`) 
ommuni
ation bits for 
onditionally dis
losing a single bitsubje
t to equality between two `-bit strings (
ompared to only 2 
ommuni
ation bits required usingLemma 3). The improved eÆ
ien
y obtained via Lemma 3 will be used in the next subse
tion.3.3 A General Redu
tion with Respe
t to Dishonest UsersUsing the 
onditional dis
losure of se
rets primitive des
ribed above, the following theorem givesa general redu
tion from any PIR s
heme to a SPIR s
heme for the 
ase of any user (possiblydishonest).Theorem 3. Let P be any 1-round k-database PIR s
heme with 
ommuni
ation 
omplexity(�k(n); �k(n)). Then, there exists a 1-round, (k+1)-database SPIR s
heme S�P with 
ommuni
ation
omplexity at most (�k(n)+(k+1)dlog2 ne ; 2�k(n)+1), and shared randomness 
omplexity O(n+�k(n)).Proof. Let SP be the proto
ol from the general (honest-user) redu
tion of Theorem 1. ByClaim 1, SP satis�es data-priva
y as long as the user sends to every database DBj the same shiftamount �j. Thus we make S�P be the following modi�
ation of SP , e�e
tively for
ing the user tosend the same shifts.The user's queries are the same as in SP , and so are the answers of DB0 (the auxiliary database)and DB1. In addition, for ea
h 2 � j � k, we let DBj and DB1 dis
lose the original SP -answerof DBj subje
t to the 
ondition �j = �1 (where �j is the dlog2 ne-bit shift sent to DBj). This
onditional dis
losure is implemented using Lemma 3.The user-priva
y in the original SP is 
learly maintained. The s
heme S�P meets the data-priva
yrequirement, sin
e the use of 
onditional dis
losure guarantees that the (possibly dishonest) userwill obtain information only on answers of databases DBj su
h that �j = �1, whi
h by Claim 1implies that the user learns at most a single physi
al bit of data. Hen
e, S�P is indeed a SPIRs
heme.We now analyze the 
omplexity of this s
heme. For ea
h 0 � j � k we let �jk(n) denotethe length of the answer sent by DBj in the s
heme SP . By Theorem 1, we know that �0k = 1and that Pkj=0 �jk(n) = �k(n) + 1. Using Lemma 3, the 
ommuni
ation 
omplexity required toimplement the 
onditional dis
losure subproto
ol involving the databases DB1 and DBj in thes
heme S�P is 2�jk(n). The total 
ommuni
ation sent from all databases to the user is therefore�0k(n) + �1k(n) + Pkj=2(2�jk(n)) � 1 + 2Pkj=1 �jk(n) = 1 + 2�k(n). The total 
ommuni
ation sentfrom the user is the same as in SP , namely �k(n) + (k + 1)dlog2 ne. The shared randomness
omplexity is the same as in SP plus the randomness required by Lemma 3, whi
h sums up ton+ 2Pkj=2max(2dlog2 ne; �jk(n)) = O(n+ �k(n)).In subsequent se
tions we present SPIR s
hemes whi
h rely on spe
i�
 stru
tural properties ofsome underlying PIR s
hemes, and exploit them to outperform the above general transformations.In parti
ular, they use sublinear shared randomness, and do not require an auxiliary database.15
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4 Spe
i�
 SPIR S
hemes with Respe
t to Honest UsersIn this se
tion we 
onstru
t honest-user SPIR s
hemes whi
h perform as well as their PIR 
oun-terparts, up to a multipli
ative 
onstant, both in terms of 
ommuni
ation and randomness. Our
onstru
tions utilize two primitives: private simultaneous messages proto
ols (des
ribed below),and 
onditional dis
losure of se
rets (introdu
ed in Subse
tion 3.2 above). Sin
e our s
hemes relyon spe
i�
 PIR s
hemes from the literature, we �rst review some details of those PIR s
hemes whi
hare important for our 
onstru
tions.4.1 Some Known PIR S
hemesWe start by des
ribing a PIR s
heme from [12℄, referred to as the basi
 
ube s
heme. This s
hemeis the basis for the 2-database s
heme B2 from [12℄, also des
ribed below, whi
h in turn servesas the basis for the re
ursive k-database s
heme Bk from [1℄. The s
hemes Bk and the polynomialinterpolation s
heme of [12, 3℄ are des
ribed later on, in the proofs of Theorems 6 and 7 respe
tively.Basi
 d-dimensional Cube S
heme: This is a PIR s
heme for k = 2d databases. Assumewithout loss of generality that the database size is n = `d, where ` is an integer. The indexset [n℄ 
an then be identi�ed with the d-dimensional 
ube [`℄d, where ea
h index i 2 [n℄ 
an benaturally identi�ed with a d-tuple (i1; : : : ; id). A d-dimensional sub
ube is a subset S1 � � � � � Sdof the d-dimensional 
ube, where ea
h Sm is a subset of [`℄. Su
h a sub
ube is denoted by thed-tuple C = (S1; : : : ; Sd). The k(= 2d) databases are assigned all of the binary strings of length d,DB�8� 2 f0; 1gd. The s
heme pro
eeds as follows.Queries: The user pi
ks a random sub
ube C = (S01 ; : : : ; S0d), where S01 ; : : : ; S0d are independentrandom subsets of [`℄. Let S1m = S0m � im (1 � m � d), where i = (i1; : : : ; id) is the index thatthe user wishes to retrieve. For ea
h � = �1�2 � � ��d 2 f0; 1gd, the user sends to database DB� thesub
ube C� = (S�11 ; : : : ; S�dd ), where ea
h set S�mm is represented by its 
hara
teristi
 `-bit string.Answers: Ea
h database DB�, � 2 f0; 1gd, 
omputes the ex
lusive-or of the data bits residing inthe sub
ube C�, and sends the resultant bit b� to the user.5Re
onstru
tion: The user 
omputes xi as the ex
lusive-or of the k bits b�'s it has re
eived.The s
heme's 
orre
tness follows from the fa
t that every bit in x ex
ept xi appears in an evennumber of sub
ubes C�, � 2 f0; 1gd, while xi appears in exa
tly one su
h sub
ube (see [12℄ fordetails). The 
ommuni
ation 
omplexity of this 2d-database s
heme is O(n1=d), mu
h worse thanthe following s
heme B2 and its generalization Bk, whi
h a
hieves 
ommuni
ation O(n1=(2k�1)) fora 
onstant number of databases k.The s
heme B2: This s
heme may be regarded as a 2-database implementation of the basi
8-database (3-dimensional) 
ube s
heme des
ribed above. Let ` = n1=3, and let i = (i1; i2; i3) be theindex of the data bit being retrieved. Ea
h of the two databases DB000 and DB111 emulates the 4databases DB�, � 2 f0; 1g3, su
h that the Hamming distan
e of � from its own index is at most 1.This is done in the following way. The user sends to DB000 the sub
ube C000 = (S01 ; S02 ; S03) and toDB111 the sub
ube C111 = (S11 ; S12 ; S13) as in the basi
 
ube s
heme. We would like the answers of5The ex
lusive-or of an empty set of bits is de�ned to be 0.16
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ea
h of the two databases to in
lude the 4 answer bits of the 4 databases it emulates. To this end,DB000 replies with its own answer bit b000 along with 3 `-bit long strings, ea
h of whi
h 
ontainsthe answer bit of one of the other databases it emulates. For instan
e, the i01-th bit of the stringemulating DB100 is obtained by 
omputing the ex
lusive-or of all data bits residing in the sub
ube(S01 � i01; S02 ; S03), implying that the i1-th bit in this string is equal to b100. Symmetri
ally, DB111sends the single bit b111 along with 3 `-bit long strings, ea
h of whi
h 
orresponds to the sub
ubesobtained from C111 by \masking" the set S1m with all ` possible values of im. Altogether, the userre
eives 8 answer strings a�; � 2 f0; 1g3, six of whi
h 
ontain ` bits ea
h, and the other two (namely,a000 and a111) 
ontain single bits. In ea
h of the `-bit long strings, the required answer bit b� 
anbe found in either the i1 bit of the string (for � = 100; 011), the i2 bit (for � = 010; 101), or the i3bit (for � = 001; 110). Sin
e the user 
an lo
ate all 8 bits b�, � 2 f0; 1g3, in the answer strings, it
an re
onstru
t xi by 
omputing their ex
lusive-or.4.2 The Private Simultaneous Messages (PSM) ModelIn a typi
al PIR s
heme, the honest user 
an extra
t from the databases' answers more informationthan just the re
onstru
ted value xi. Towards solving this problem, we use the following idea.Consider any 1-round PIR s
heme. In an exe
ution of su
h s
heme, the user �rst produ
es k queriesq1; : : : ; qk, depending on the index i. It then sends ea
h query to the 
orresponding database andin response re
eives k answer strings a1; : : : ; ak. Finally, the user applies a re
onstru
tion fun
tion	 to obtain the desired bit xi. Our idea is to have the user 
ompute the output of 	 withouta
tually getting the answers a1; : : : ; ak, from whi
h it 
an obtain more information, but rather getsome other messages m1; : : : ; mk that keep the priva
y of the string x.Pre
isely this idea is 
aptured by the model of non-intera
tive private 
omputation introdu
edin [16℄ and further studied in [18℄, 
alled the Private Simultaneous Messages (PSM) model. Inthis model there are k players, ea
h player Pj holding a private input string yj, and an externalreferee 
alled Carol. All players have a

ess to a shared random input, whi
h is unknown to Carol.The goal of a PSM proto
ol is to let Carol evaluate a fun
tion f(y1; : : : ; yk) without learning anyadditional information about the inputs y1; : : : ; yk. The s
enario of the PSM proto
ol is similar to a
onditional dis
losure proto
ol (see Subse
tion 3.2), ex
ept that in PSM there is no input to Carol,and there is no other input to the players ex
ept y1; : : : ; yk. More formally, in a PSM proto
ol ea
hplayer Pj sends a single message to Carol, based on its private input yj and the shared random input,and Carol applies some re
onstru
tion fun
tion to the k messages she re
eived. A PSM proto
ol
omputing a k-argument fun
tion f must satisfy the following requirements: (1) 
orre
tness: forany input tuple y = (y1; : : : ; yk) and any shared random input, the value re
onstru
ted by Carolis f(y); and (2) priva
y: given any two input tuples y = (y1; : : : ; yk); y0 = (y01; : : : ; y0k) su
h thatf(y) = f(y0), the messages viewed by Carol are identi
ally distributed.The 
ommuni
ation 
omplexity and the shared randomness 
omplexity of a PSM proto
ol arede�ned as in the 
onditional dis
losure of se
rets model. We denote the 
ommuni
ation 
omplexityof a k-player PSM proto
ol by 
k(m), where m is the total number of input bits held by the kplayers, and its shared randomness 
omplexity by dk(m).In [16, 18℄ several upper bounds on PSM 
omplexity are obtained. In parti
ular, it is shown thatany Boolean fun
tion with a bran
hing program of size S(m) (with any partition of the m inputbits among k players) 
an be 
omputed by a PSM proto
ol whose 
ommuni
ation 
omplexity andshared randomness 
omplexity are O(k �S(m)2) [18℄. In general, this quadrati
 overhead will turn17
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out to be too expensive for our purposes. However, some fun
tions do admit simple PSM proto
olswith linear 
omplexity as we see in the following lemma.Lemma 4. Let (G;+; 0); (H; ~+; ~0) be �nite Abelian groups, and f :Gk ! H be a linear fun
tion(that is, f((y1+z1); : : : ; (yk+zk)) = f(y1; : : : ; yk) ~+f(z1; : : : ; zk) for all (y1; : : : ; yk); (z1; : : : ; zk) 2 Gk).Then, there exists a PSM proto
ol 
omputing f whose 
ommuni
ation 
omplexity and sharedrandomness 
omplexity are no larger than m, where m is the total number of input bits to f .Proof. The PSM proto
ol for f pro
eeds as follows. Ea
h player Pj masks its input yj with rj,setting wj def= yj + rj, where (r1; : : : ; rk) 2 Gk is a random shared tuple satisfying f(r1; : : : ; rk) = 0.Then, Pj sends the masked input wj to Carol. Carol 
an now 
ompute f(w1; : : : ; wk) = f((y1 +r1); : : : ; (yk + rk)) = f(y1; : : : ; yk) ~+f(r1; : : : ; rk) = f(y1; : : : ; yk) ~+~0 = f(y1; : : : ; yk), whi
h is thedesired output value. The priva
y of this proto
ol follows by observing that for any input tupley = (y1; : : : ; yk) and message tuple w = (w1; : : : ; wk) su
h that f(y) = f(w), there exists a uniquerandom input r (namely, r = w � y) su
h that f(r) = 0 and the messages indu
ed by the inputs yand the random input r are w. Therefore, every message tuple w su
h that f(y) = f(w) has thesame size support (a singleton), implying identi
al distribution of all su
h messages. Finally, the
ommuni
ation and shared randomness 
omplexity are 
learly as spe
i�ed.This lemma is used in the sequel, when the groups G;H are the binary strings of a �xed length,and the operation is � (ex
lusive-or).Remark 2. (CDS from PSM) Note that the 
onditional dis
losure of se
rets (CDS) primitivedes
ribed in Subse
tion 3.2 and used in Theorem 2 may be implemented (less eÆ
iently) usingPSM 
omputation. Spe
i�
ally, dis
losing a bit s subje
t to a 
ondition g(y) may be redu
ed tothe PSM 
omputation of the fun
tion f(y; s) = g(y) ^ s. Indeed, by the 
orre
tness of the PSMproto
ol for f , if g(y) = 1 then Carol 
an re
onstru
t s = g(y) ^ s. On the other hand, if g(y) = 0then, by the priva
y of the PSM proto
ol, Carol's view is identi
ally distributed under the inputs(y; 0) and (y; 1), implying that Carol learns nothing about s. However, the general upper bound onthe 
omplexity of 
onditional dis
losure of se
rets, established by Theorem 2, is linear in the sizeof a formula (or a span program) 
omputing the 
ondition, whereas best known results on PSM
omplexity yield a bound whi
h is quadrati
 in su
h representation size. This is be
ause everyfun
tion with formula size S(m) is also 
omputable by a bran
hing program of size S(m) + 1 (see[27, Chapter 14℄). This, as mentioned above, gives a PSM 
omplexity of O(S(m)2).4.3 SPIR S
hemes Based on PSM and CDS Proto
olsIn this subse
tion we use PSM and CDS proto
ols to 
onstru
t honest-user SPIR s
hemes. First, inlemma 5 we apply PSM solutions to a PIR s
heme with a parti
ular type of re
onstru
tion fun
tionin order to get an honest-user SPIR s
heme. We then dis
uss the impli
ations of this lemma andprovide an example in whi
h it is used. This example and lemma are also helpful in our later
onstru
tions, in parti
ular ones whi
h involve PIR s
hemes with a more general re
onstru
tionfun
tion.Lemma 5. Suppose P is a 1-round k-database PIR s
heme with 
ommuni
ation 
omplexity(�k(n); �k(n)), su
h that: (1) the re
onstru
tion fun
tion 	 depends only on the answers of the18
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databases, and (2) the fun
tion 	 
an be 
omputed by a PSM proto
ol whose 
ommuni
ation
omplexity is 
k(m) and whose shared randomness 
omplexity is dk(n). Then, there exists a 1-roundk-database honest-user SPIR s
heme S whose 
ommuni
ation 
omplexity is (�k(n); 
k(�k(n))) andwhose shared randomness 
omplexity is dk(�k(n)).Proof. A s
heme S of the spe
i�ed 
omplexity 
an be obtained from P as follows. Theuser 
hooses queries q1; : : : ; qk as it does in the PIR s
heme P and sends ea
h query qj to the
orresponding database DBj. Ea
h database DBj 
omputes its answer aj as it would do in P, butinstead of sending the answer to the user, the databases (using their shared randomness) simulatethe PSM 
omputation of 	(a1; : : : ; ak). That is, ea
h database DBj sends to the user the messagethat player Pj would send to Carol in the PSM proto
ol for 	. The 
orre
tness and priva
y of Sfollow from the 
orre
tness and priva
y of P and of the PSM proto
ol for 	, and the 
omplexity is
learly as stated.We stress that Lemma 5 only yields honest-user SPIR s
hemes; indeed, a dishonest user 
anpotentially generate \invalid" queries, su
h that applying the re
onstru
tion fun
tion to their an-swers gives forbidden information whi
h does not follow from any physi
al data bit. (Here the ideaof hiding the input to the re
onstru
tion fun
tion will not help, sin
e the dishonest user may getinformation from the output of the re
onstru
tion fun
tion). A dire
t appli
ation of Lemma 5 isgiven in the following example.Example 1. PSM-based honest-user SPIR s
heme for the d-dimensional 
ube s
heme..Consider the basi
 d-dimensional 
ube s
heme from Subse
tion 4.1, in whi
h the re
onstru
tionfun
tion 
onsists of 
omputing the ex
lusive-or of the k answer bits sent from the databases. Thiss
heme does not maintain data-priva
y, sin
e the user learns the ex
lusive-or of k = 2d di�erentsubsets of data bits. In this 
ase, the extra information 
an be eliminated by applying Lemmas 4and 5. Spe
i�
ally, instead of sending the original answer b�, ea
h database DB� will send a maskedanswer b� � r�, where r = r0���00r0���01 � � � r1���10 is a (k � 1)-bit shared random string, and r1���11 is
omputed as the ex
lusive-or of the bits of r. Under the modi�ed s
heme, an honest user's view isuniformly distributed among all k-tuples whose ex
lusive-or is L�2f0;1gd b�, whi
h by the s
heme's
orre
tness is equal to the physi
al bit xi.Other PIR s
hemes with linear re
onstru
tion fun
tion, to whi
h Lemma 5 is appli
able withno 
ommuni
ation overhead, in
lude the polynomial-interpolation s
hemes for O(logn) databasesof [12, 3℄, for whi
h (dishonest-user) SPIR 
ounterparts will be given in Subse
tion 5.2.Remark 3. (On the generality of Lemma 5) Note that Lemma 5 requires that in theunderlying PIR s
heme P, the re
onstru
tion fun
tion depends only on the answers 
omputed bythe databases. While this is the 
ase with the basi
 
ube s
heme (see Example 1 above), this isnot the 
ase with the s
heme B2, for instan
e, where re
onstru
tion heavily depends on the indexi held by the user. In order to satisfy this requirement, any PIR s
heme P, whose re
onstru
tionfun
tion 	 may also depend on the the index i and the queries qj, may be augmented into a PIRs
heme P 0, whose re
onstru
tion 	0 depends only on the answers, as follows. First, the user se
ret-shares the index i between two databases independently of its original queries (e.g., by sendinga dlog2 ne-bit random string to one database and the ex
lusive-or of this random string with thebinary representation of i to the other database). Su
h a sharing of i does not violate the user's19
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priva
y and introdu
es only a minor overhead on the query 
omplexity. Then, ea
h database DBjappends to its original answer aj the query qj it re
eived (in
luding the share of i). The originalre
onstru
tion fun
tion 	 indu
es a re
onstru
tion fun
tion 	0 for the augmented s
heme P 0, whi
hdepends on the databases' answers alone. Hen
e, Lemma 5 
an be applied to the augmented s
heme.However, the 
omplexity of this solution 
an be prohibitive.In the remainder of this se
tion we derive an honest-user SPIR s
heme from the 2-database PIRs
heme B2.6 In this 
ase, it is possible to use the PSM methodology of Lemma 5 and Remark 3to eÆ
iently meet this goal. However, towards 
onstru
tions in the next se
tions, we introdu
e analternative, 
on
eptually simpler, methodology of using 
onditional dis
losure of se
rets on top ofPSM. A similar methodology may also be useful in di�erent 
ontexts, as will be demonstrated inSubse
tion 6.3.Theorem 4. There exists a 2-database honest-user SPIR s
heme, B02, with 
ommuni
ation
omplexity and shared randomness 
omplexity O(n1=3).Proof. Re
all the PIR s
heme B2 (see Se
tion 4.1) and, in parti
ular, its re
onstru
tion fun
tionwhi
h may be viewed as a two-stage pro
edure: (1) the user sele
ts a single bit from ea
h of 8answer strings, depending only on the index i = (i1; i2; i3); and (2) the user takes the ex
lusive-orof the 8 bits it has sele
ted to obtain xi. Thus, if we let the honest user learn only the ex
lusive-orof the 8 bits 
orresponding to i, the data-priva
y requirement will be met. This 
an be a
hievedby using the 
onditional dis
losure of se
rets primitive on top of a PSM proto
ol 
omputing theex
lusive-or of 8 bits. The s
heme B02, an honest-user SPIR version of B2, pro
eeds as follows:Queries: The user sends the sub
ubes C000 to DB000 and C111 to DB111, as in the s
heme B2. Inaddition, the user independently shares the three 
hara
teristi
 ve
tors �im , m = 1; 2; 3, among thetwo databases. This is done by pi
king random `-bit strings i0m; i1m su
h that i0m � i1m = �im andsending the three strings i0m to DB000 and the three strings i1m to DB111. 7Answers: Ea
h of the two databases 
omputes 3 answer strings of length n1=3 and 1 one bit answeras in the B2 s
heme. Denote by a� the answer string emulating DB�, � 2 f0; 1g3. The databasestreat ea
h bit of a string a� as an input to a PSM proto
ol 
omputing the ex
lusive-or of 8 bits,and using their shared randomness they 
ompute (but do not send) the PSM message sent for ea
hsu
h bit. Under the simple PSM proto
ol for XOR (see Lemma 4 or Example 1), ea
h su
h messageis by itself a single bit. Let w� denote the string obtained by repla
ing ea
h bit from a� by its
orresponding PSM message bit. In this 
ase, w� is obtained by masking every bit of a� with thesame random bit r�, where the bits fr�g are 8 random bits whose ex
lusive-or is 0. Finally, forevery � 2 f0; 1g3 and 1 � j � jw�j, the databases use their shared randomness to dis
lose to theuser the j-th bit of w�, (w�)j, subje
t to an appropriate 
ondition. For � = 100; 011 the 
onditionis (i01)j � (i11)j = 1, for � = 010; 101 it is (i02)j � (i12)j = 1, and for � = 001; 110 it is (i03)j � (i13)j = 1.The single bits w000; w111 
an be sent in a plain form.6While it is possible to extend our 
onstru
tion to apply to Bk, the k-database generalization from [1℄, we postponethis generalization to the next se
tion, whi
h deals with the 
ase of a dishonest user.7When the user is honest, this extra sharing of �im is redundant sin
e the 
hara
teristi
 ve
tors of the sets S0m; S1msent by the user may be viewed as these shares; however, this presentation more 
losely resembles the solution for adishonest user, des
ribed in the the next se
tion. 20
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Re
onstru
tion: The user re
onstru
ts the eight PSM message bits 
orresponding to the indexi (using the re
onstru
tion fun
tion of the 
onditional dis
losure proto
ol), and 
omputes theirex
lusive-or to obtain xi.The 
orre
tness of the above s
heme and the user's priva
y follow from the 
orre
tness and user'spriva
y of the PIR s
heme B2 and the 
orre
tness of the CDS and the PSM s
hemes used, and areeasy to verify. We turn to show that the s
heme meets the data-priva
y requirement with respe
tto an honest user. We �rst introdu
e some notation. By A(x; i; r; �) we denote the 8-tuple of B2-answers a�, 
omputed by the databases in the exe
ution of B02 (or B2) indu
ed by (x; i; r; �), wherex is the data string, i is the user's input query, r is the shared randomness of the databases, and� is the random input of the user. Similarly, by W (x; i; r; �) we denote the 8-tuple of PSM stringsw�, 
omputed by the databases in the 
orresponding exe
ution of B02. Finally, given an 8-tuplew = (w�)�2f0;1g3 and an index i, we let wji denote the restri
tion of w to the 8 bits 
orrespondingto the index i.Sin
e the user is honest and by the 
orre
tness of B2, the ex
lusive-or of the eight bits inA(x; i; r; �)ji is equal to xi. Thus, by the priva
y of the PSM proto
ol for XOR, it follows that forany x; x0; i su
h that xi = x0i, any � and z 2 f0; 1g8,Prr [W (x; i; r; �)ji = z℄ = Prr [W (x0; i; r; �)ji = z℄: (1)By the se
re
y of the 
onditional dis
losure proto
ol and the independen
e of its shared randomnessfrom the PSM randomness, it follows that for any x; x0; i; �; v, and z 2 f0; 1g8 we have:Prr [viewU(x; i; r; �) = v j W (x; i; r; �)ji = z℄ = Prr [viewU(x0; i; r; �) = v jW (x0; i; r; �)ji = z℄: (2)Finally, 
ombining equations (1) and (2) we get that for any x; x0; i; �; v su
h that xi = x0i:Prr [viewU (x; i; r; �) = v℄ = Xz2f0;1g8 Prr [viewU (x; i; r; �) = v j W (x; i; r; �)ji = z℄ � Prr [W (x; i; r; �)ji = z℄= Xz2f0;1g8 Prr [viewU (x0; i; r; �) = v j W (x0; i; r; �)ji = z℄ � Prr [W (x0; i; r; �)ji = z℄= Prr [viewU (x0; i; r; �) = v℄;
on
luding the proof of the data-priva
y property. (We note that while the above proof expli
itlyrefers to all relevant random variables, in subsequent proofs of a similar nature su
h detailed analysiswill be repla
ed by higher level arguments.)It remains to show that the s
heme meets the spe
i�ed 
omplexity bounds. Sin
e the 
onditionfor dis
losing ea
h of the O(n1=3) bits of the strings wj is of the form \ y1� y2 = 1" (or equivalentlyy1�y2 = 0), where y1; y2 are single bits, it follows from Lemma 3 (or Theorem 2) that all su
h maskedanswer bits 
an be 
onditionally dis
losed with total 
ommuni
ation and shared randomness 
ost ofO(n1=3) bits. Altogether, the 
ommuni
ation 
omplexity of the s
heme and its shared randomness
omplexity are O(n1=3), as required.5 Spe
i�
 SPIR S
hemes with Respe
t to Dishonest UsersIn the previous se
tion we were 
on
erned with an honest but 
urious user. In this se
tion we
onstru
t SPIR s
hemes whi
h guarantee data-priva
y with respe
t to dishonest users as well. The21
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following example demonstrates the extra information that a dishonest user may obtain in ordinaryPIR s
hemes and in the honest-user SPIR s
heme 
onstru
ted above.Example 2. Consider the s
heme B2. Suppose that a user sends the sub
ube C000 = (fi1g ; fi2g ;fi3g) as a (legitimate) query to the �rst database. Then, the answers of this database alone, whi
hin
lude the bits x(i1;i2;i3), x(i1;i2;i3)�x(j;i2;i3), x(i1;i2;i3)�x(i1;j;i3), and x(i1;i2;i3)�x(i1;i2;j) for all j 2 [n1=3℄,reveal about 3n1=3 physi
al bits of data. Note that by randomly setting this query an honest user
an also learn that many physi
al data bits, but this o

urs with only an exponentially smallprobability. Moreover, even in the s
heme B02 (whi
h perfe
tly maintains data-priva
y for an honestuser), a dishonest user may similarly obtain �(n1=3) physi
al data bits. To do this, the user sendsto the �rst database the same 
ube C000 as above, and sends to the se
ond database the empty 
ubeC111 = (;; ;; ;). Instead of sharing the 
hara
teristi
 ve
tors �im , the user will now share three all-ones ve
tors, whi
h would automati
ally satisfy all dis
losure 
onditions and allow the user to learnthe entirety of the eight strings w�. Then, about 3n1=3 physi
al bits 
an be re
onstru
ted from the
ombined answers of the two databases. For instan
e, for every j 2 [n1=3℄ the user may re
onstru
tthe bit x(j;i2;i3) by 
omputing w000� (w100)j� (w010)i2 � (w001)i3 � (w011)1� (w101)1� (w011)1�w111.Observe that in the honest-user SPIR s
heme B02, a dishonest user 
an 
heat in two ways. Oneway is to improperly share the 
hara
teristi
 ve
tor of its index (e.g., share the all-ones ve
torinstead). The other way is to send invalid B2-queries. This may give the user extra informationeven when the index is properly shared, be
ause invalid B2-queries 
an make the output of there
onstru
tion fun
tion depend on more than one bit of data. In order to be
ome resilient todishonest users, any honest-user SPIR s
heme 
an (in prin
iple) be modi�ed to �lter every originalanswer bit using the 
onditional dis
losure primitive, su
h that the 
ondition tests for the validityof the user's queries. However, the 
omplexity of dis
losing ea
h answer bit subje
t to a full validitytest will be prohibitive. In the next subse
tions we use alternative means to transform the bestknown PIR s
hemes into SPIR s
hemes. All these transformations involve at most a 
onstantmultipli
ative 
ommuni
ation overhead.5.1 Cube S
hemesIn this subse
tion we 
onstru
t, for any 
onstant k � 2, a k-database SPIR s
heme whose 
ommu-ni
ation 
omplexity is O(n1=(2k�1)) (as of the best known k-database PIR s
heme). We �rst addressthe 2-database 
ase, from whi
h we then generalize to a k-database s
heme.Theorem 5. There exists a 2-database SPIR s
heme, B002 , with 
ommuni
ation 
omplexity andshared randomness 
omplexity O(n1=3).Proof. Assume that ` = n1=3 is an integer. The s
heme B002 pro
eeds as follows:Queries: The user sends to DB000 the sub
ube C000 = (S01 ; S02 ; S03) and to DB111 the sub
ubeC111 = (S11 ; S12 ; S13), as in the s
heme B2. In addition, the user independently shares dense repre-sentations of the index 
omponents im, m = 1; 2; 3 (as opposed to the unary representation in thes
heme B02). This is done by viewing ea
h index 
omponent im as an element of Z`, pi
king randomdlog2 `e-bit elements i0m; i1m 2 Z` su
h that i0m + i1m � im (mod `), and sending the three strings i0mto DB000 and the three strings i1m to DB111. 22
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Answers: The answers in B002 are 
onstru
ted on top of some intermediate 
omputations fromthe s
heme B02. Re
all that b� denotes the answer from database DB� in the basi
 3-dimensional
ube s
heme, a� denotes the answer string 
orresponding to DB� in the original s
heme B2, andw� denotes the strings 
onstru
ted by taking the ex
lusive-or of ea
h bit in the string a� with thesame random bit r� (these 
orrespond to messages in a PSM proto
ol for 
omputing XOR). Lett1; t2; t3 be shared random strings of length ` ea
h, and u1; u2; u3 be shared random bits (these willbe used as \masks" to guarantee that the user gets no information on x if the sub
ubes it sent arenot 
onsistent with the index whose binary representation was shared). The databases reply withthe following messages:1. DB000 sends to the user the three bits v0m def= h�S0m; tmi � um, m = 1; 2; 3, where h�; �i denotesinner produ
t over GF(2). Similarly, DB111 sends the bits v1m def= h�S1m; tmi � um.2. DB000 sends to the user the bit w000. Similarly, DB111 sends the bit w111.3. DB000;DB111 use the SPIR s
heme S�2 of Corollary 1 to provide the user with a single bit fromea
h of the six `-bit strings w100; w010; w001 (known to DB000), and w011� t1; w101� t2; w110� t3(known to DB111)8, in the positions 
orresponding to the shared index. This is done by usingthe user's queries i0m; i1m as the queries for the s
heme S�2 , where m = 1 for retrieval fromw100 and w011 � t1, m = 2 for retrieval from w010 and w101 � t2, and m = 3 for retrieval fromw001 and w110 � t3. Sin
e the index retrieved in the s
heme S�2 is the sum of the queries toboth databases, this means that the user obtains the bits in position i1 from the �rst pair ofstrings, i2 from the se
ond pair, and i3 from the third.Re
onstru
tion: An honest user re
onstru
t xi as follows. For m = 1; 2; 3 the user re
onstru
tsthe bit (tm)im by 
omputing v0m � v1m. Then, using these 3 bits and the bits obtained from the S�2invo
ations, it 
omputes(t1)i1 � (t2)i2 � (t3)i3 � w000 � w111 � (w011)i1 � (w101)i2 � (w110)i3�(w100 � t1)i1 � (w010 � t2)i2 � (w001 � t3)i3= M�2f0;1g3 b�= xiThe 
orre
tness and the user's priva
y in this s
heme are easy to verify. We now show thes
heme's data-priva
y, relative to any user.Lemma 6. Denote by Sbm; ibm, b = 0; 1, m = 1; 2; 3, queries sent by a possibly dishonest user, andlet i�m def= i0m + i1m (mod `). If these queries satisfy S0m � S1m = fi�mg for m = 1; 2; 3 then the answersreveal the bit x(i�1 ;i�2;i�3) and no other information about the data. Otherwise, the answers reveal noinformation about the data.Proof. First, observe that using the random bits um guarantees that for m = 1; 2; 3 the answersv0m; v1m are two uniformly distributed bits satisfying v0m � v1m = h�S0m�S1m ; tmi. Thus if the user is8Re
all that in S�2 only one of the two databases needs to know the data, and the other one only needs a

ess tothe shared random string. 23



www.manaraa.com

honest then S0m � S1m = fi�mg and so the user 
an obtain (tm)i�m, but if S0m � S1m 6= fi�mg then themessages (v0m; v1m), m = 1; 2; 3, jointly give no information about (tm)i�m . (Note that in the latter
ase a user may learn the ex
lusive-or of the bit (tm)i�m with other bits in tm, but this still gives noinformation on (tm)i�m.)Next, observe that the data priva
y of the SPIR s
heme S�2 guarantees that the user learns asingle physi
al bit from ea
h of the six `-bit strings to whi
h the s
heme was applied. Moreover, theposition of this bit 
orresponds to a shared index 
omponent i�m. By the properties of the underlyingPSM proto
ol, the only information revealed by these bits is their ex
lusive-or whi
h is( M�2f0;1g3 b�)� (t1)i�1 � (t2)i�2 � (t3)i�3 : (3)Altogether, the only information on x the user 
an obtain is what follows from h�S0m�S1m ; tmi and theout
ome of expression (3) above. Now, if S0m�S1m = fi�mg form = 1; 2; 3 thenL�2f0;1g3 b� = x(i�1 ;i�2;i�3),implying that xi�1;i�2;i�3 is the only information on x learned by the user. On the other hand, if S0m �S1m 6= fi�mg for some m, then there exists some m for whi
h the user gets no information about(tm)i�m, and thus it learns no information about the data.Finally, using Corollary 1 the S�2 invo
ations 
an be implemented with a total of O(`) 
om-muni
ation 
omplexity and shared randomness 
omplexity. Thus, the s
heme meets the spe
i�ed
omplexity bounds.We note that the SPIR s
heme B002 
onstru
ted above is in fa
t as 
ommuni
ation eÆ
ient asthe PIR s
heme B2 up to an additive logarithmi
 overhead.Next, we give a k-database generalization of Theorem 5.Theorem 6. For every 
onstant k � 2 there exists a k-database SPIR s
heme, B00k , with 
ommu-ni
ation 
omplexity and shared randomness 
omplexity O(n1=(2k�1)).Proof. We start by giving a short des
ription of the PIR s
heme Bk from [1℄. Let d = 2k � 1and ` = n1=d. In the s
heme Bk, the k databases (denoted DB1; : : : ;DBk) jointly emulate the 2ddatabases of the d-dimensional 
ube s
heme. The s
heme pro
eeds as follows. The user sends toDB1 the sub
ube C0d as in the basi
 
ube s
heme, and sends to ea
h of DB2; : : : ; DBk the sub
ubeC1d. In its answers, DB1 emulates all databases DB� of the original s
heme su
h that � 2 f0; 1gdis at Hamming distan
e at most 1 from 0d, similarly to the way su
h an emulation is done in thes
heme B2. Simultaneously, the remaining databases DB2; : : : ;DBk jointly emulate the remainingdatabases of the original s
heme, namely all DB� su
h that � 
ontains at least two 1's. This is doneusing a 
onstant number (2d � d� 1) of re
ursive invo
ations of the s
heme Bk�1 between the userand DB2; : : : ;DBk. In ea
h su
h invo
ation the user retrieves a single bit b� from a virtual datastring, whose entries 
orrespond to the di�erent sub
ubes possibly sent to DB� in the basi
 
ubes
heme (i.e., ea
h bit of the virtual data strings is the ex
lusive-or of data bits residing in su
h apotential sub
ube). By taking the ex
lusive-or of the d + 1 bits sele
ted from the answers of DB1together with the 2d�d�1 bits retrieved by the re
ursive invo
ations of Bk�1, the user re
onstru
tsxi. We now show how to adapt the proof of Theorem 5 to this k-database generalization. Intuitively,we 
ombine the re
ursive 
onstru
tion outlined above with the te
hniques used for 
onstru
ting thes
heme B002 (of Theorem 5). Note that in B002 ea
h of the two databases had a role as a \main24
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database" having some information to send to the user, as well as an \auxiliary database" to helpthe other database dis
lose its own information without revealing any extra information. Similarlyin B00k we will have DB1 be the \main database" in emulating the databases DB� of Hammingdistan
e at most 1 from 0d in the original 
ube s
heme, and DB2 be the \auxiliary database" forthis purpose. In addition, DB2; : : : ;DBk will re
ursively emulate the other databases of the original
ube s
heme, as in the s
heme Bk des
ribed above. We start by des
ribing the indu
tion assumptionwe will be using, followed by a des
ription of the s
heme.Suppose we have a (k�1)-database SPIR s
heme B00k�1 of 
ommuni
ation 
omplexity and sharedrandomness 
omplexity O(n1=(2k�3)). In this 
ase we make an additional assumption on B00k�1: weassume that the user is required to 
ommit to the index being retrieved. This assumption is madepre
ise in the following way. We say that a 1-round PIR s
heme P satis�es the strong data-priva
yrequirement with parameter d0, if the following 
onditions hold:1. On a data string x of length n0 = `d0 , the user sends spe
ial queries Q0m; Q1m, 1 � m � d0 (ea
hof whi
h is an element of Z`); and2. If a user (possibly a dishonest user) sends queries in whi
h Q0m +Q1m � i�m (mod `) for ea
h1 � m � d0, then the answers reveal at most the bit x(i�1 ;:::;i�d0).Noti
e that strong data-priva
y implies the usual data-priva
y. Also note that the s
heme B002satis�es this stronger requirement with d0 = 3, as follows from Lemma 6. Our additional assumptionon B00k�1 (whi
h will be 
arried on to B00k) is that it satis�es the strong data-priva
y requirement withd0 = 2(k � 1)� 1 = 2k � 3. The s
heme B00k pro
eeds as follows:Queries: The user sends to DB1 the sub
ube C0d = (S01 ; : : : ; S0d) and to ea
h of DB2; : : : ;DBkthe sub
ube C1d = (S11 ; : : : ; S1d). In addition, the user independently shares dense representationsof the index 
omponents im, m = 1; 2; : : : ; d, between DB1 and DB2, using additive shares over Z`as in the s
heme B002 . Finally, the user sends the queries ne
essary for the re
ursive invo
ations ofB00k�1 des
ribed in item 4 below.Answers: As before, let w� denote the strings 
orresponding to the PSM message strings foremulating database DB� in the d-dimensional 
ube s
heme. For � su
h that weight(�) � 2 thesestrings are des
ribed below, whereas for � of weight 0 or 1 these 
an be 
onstru
ted from the queryC0d exa
tly as before. In parti
ular, we 
onsider wem where em denotes the m-th unit ve
tor oflength d (note that the databases whose index is in Hamming distan
e at most 1 from 0d are DB0dand DBem 1 � m � d, and they 
an be emulated by DB0d as before). Let t1; t2; : : : ; td be sharedrandom strings of length `, and u1; u2; : : : ; ud be shared random bits. The databases reply with thefollowing messages:1. DB1 sends to the user the d bits v0m def= h�S0m ; tmi � um, 1 � m � d. Similarly, DB2 sends thebits v1m def= h�S1m ; tmi � um.2. DB1 sends the bit w0d � s, where s is a shared random bit (to be 
onditionally dis
losed initem 5 below).3. DB1 
omputes all `-bit long PSM message strings wem, 1 � m � d, emulating databases DBemin the d-dimensional 
ube s
heme. Then DB1 and DB2 use the SPIR s
heme S�2 to providethe user with the bit in position im of ea
h string wem � tm. Like in the s
heme B002 , this isdone by using the shares of im as the queries in S�2 .25
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4. For ea
h � 2 f0; 1gd su
h that weight(�) � 2, the user and the databases DB2; DB3; : : : ; DBkre
ursively invoke B00k�1 on the virtual data string w� de�ned in the following. Let d0 = d� 2and n0 = `d0 . Let m�z , 1 � z � weight(�), denote the position of the z-th zero in �. Withevery � su
h that weight(�) � 2 and tuple i0 = (i01; : : : ; i0d0) 2 [`℄d0 we asso
iate a sub
ube C�i0(of the 
ube [`℄d), whi
h is obtained from C1d by repla
ing ea
h set S1z , 1 � z � weight(�),with the set S1z � im�z . Ea
h w� is de�ned to be the n0-bit string, whose i0-th bit is equal to theex
lusive-or of data bits residing in the sub
ube C�i0 together with the PSM random bit r�. Ina re
ursive invo
ation of B00k�1 on the virtual data string w�, the user retrieves the bit whoseindex is represented by the d0-tuple i0� = (im�1 ; im�2 ; : : : ; im�p ; 1; : : : ; 1), where p = weight(�).5. The databases 
onditionally dis
lose the shared bit s subje
t to a 
onjun
tion of the following
onditions:(a) For every 3 � j � k, the sub
ube sent to DBj is equal to the sub
ube sent to DB2.(b) For every � 2 f0; 1gd su
h that weight(�) � 2, the index i0 shared by the user in theinvo
ation of B00k�1 on w� (in a

ordan
e with the strong data-priva
y assumption madeon B00k�1) is equal to i0�. This 
an be veri�ed by 
omparing ea
h 
omponent of i0 with the
orresponding 
omponent of i as shared by the user.(For eÆ
iently dis
losing s under the 
onjun
tion of all these 
onditions, the databases maywrite s as the ex
lusive-or of several independent random bits, and dis
lose ea
h of these bitssubje
t to a single 
ondition of equality between two strings).Re
onstru
tion: The user re
onstru
ts xi by re
ursively re
onstru
ting the bits retrieved viaB00k�1, and taking their ex
lusive-or with all other bits dis
losed to the user.We start by analyzing the 
ommuni
ation and shared randomness 
omplexity. By Lemma 3 andCorollary 1, the 
onditional dis
losure of the bit s and the SPIR retrievals from the strings wem� tm
an be implemented with O(`) 
ommuni
ation and shared randomness 
omplexity, for a 
onstantk. Thus, by indu
tion (using B002 as basis) the 
ommuni
ation 
omplexity is 
k(n) = O(`) + (2d �d � 1) � 
k�1(`d�2) = O(`) = O(n1=(2k�1)), and similarly the shared randomness 
omplexity is alsoO(n(1=(2k�1)).The 
orre
tness and the user's priva
y 
an be easily veri�ed. It remains to show that thestrong data-priva
y requirement also holds for B00k . We argue that if the user 
ommits to an indexi = (i1; : : : ; id) (by sharing its 
omponents between DB1 and DB2), then it 
an learn at most thebit xi. As in the B002 s
heme, an honest user learns xi alone. In order to learn some informationinvolving other bits, a dishonest user must deviate from the s
heme's spe
i�
ation either by sendingto DB1; : : : ;DBk sub
ubes whi
h don't meet the requirements imposed by i, or by trying to retrievefrom the re
ursive invo
ations of B00k�1 di�erent bits than those 
orresponding to i. The spe
i�eddis
losure 
onditions, the data priva
y of S�2 , and the strong data-priva
y assumption made on B00k�1guarantee that in both of these 
ases, the user will learn no information at all.5.2 A Polynomial Interpolation Based S
hemeIn this se
tion we prove that the polynomial interpolation based PIR s
heme for k = dlog2 n + 1edatabases from [12℄ (see also [3℄) 
an be transformed into a SPIR s
heme with the same number ofdatabases and a 
onstant fa
tor of 
ommuni
ation and randomness overhead.26
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Theorem 7. There exists a dlog2 n+ 1e-database SPIR s
heme, with 
ommuni
ation 
omplexityand shared randomness 
omplexity O(log2 n � log logn).Proof. We start by des
ribing the underlying PIR s
heme, whi
h is based on the method oflow-degree polynomial interpolation (see [3, 12℄ for more details). Assume without loss of generalitythat n = 2s, where s is a positive integer, and let k = s+1 be the number of databases. Let GF(q) bea �nite �eld with at least k+1 elements, and �j, 1 � j � k, be distin
t, nonzero elements of GF(q).With every index i 2 [n℄ we asso
iate an s-tuple ~i = (i1; i2; : : : ; is) 2 f0; 1gs, 
orresponding to thebinary representation of i. For ea
h data string x 2 f0; 1gn, let px(y1; : : : ; ys) denote a multivariatedegree-s polynomial su
h that px(~i) = xi for every i 2 [n℄ (su
h px may be taken to be the multilinearextension of the fun
tion f(~i) def= xi). The user pi
ks a random s-tuple ~
 = (
1; : : : ; 
s) 2 GF(q)s,and sends to ea
h database DBj, 1 � j � k, the query ~uj = �j � ~
 +~i. Ea
h database DBj replieswith a single �eld element aj def= px(~uj). The user re
onstru
ts xi by interpolation: if p0 is theunique degree-s univariate polynomial (over GF(q)) su
h that p0(�j) = aj for every 1 � j � k, thenxi = p0(0). The 
ommuni
ation 
omplexity of this s
heme is O(log2 n log logn).As noted in Subse
tion 4.3, the linearity of the re
onstru
tion fun
tion (interpolation) allowsto obtain a PSM-based honest-user SPIR s
heme with the same 
ommuni
ation 
omplexity. Toprevent a dishonest user from obtaining any illegitimate information on x, we require the user toprove that its queries are 
onsistent with some~i 2 f0; 1gs and ~
 2 GF(q)s. Su
h a proof will 
onsistof sharing ea
h entry of ~
 and ~i, and its validation will 
onsist of verifying that ~i 2 f0; 1gs and that~uj = �j � ~
+~i for ea
h 1 � j � k.We begin with the following observation, whi
h also yields a slight improvement to the originalPIR s
heme des
ribed above. Note that the user re
onstru
ts xi by 
omputing some �xed linear
ombination over GF(q) of the k �eld elements replied by the databases. Thus, as a �rst step,we 
an let ea
h database multiply its original answer by the 
orresponding 
oeÆ
ient, so thatre
onstru
tion will 
onsist of 
omputing the sum of all answers over GF(q). Then, if q is 
hosen tobe a power of 2 (q = 2dlog2(k+1)e suÆ
es), it is enough for the databases to reply only with the \leastsigni�
ant bit" of ea
h answer, and for the user to re
onstru
t xi by taking the ex
lusive-or of thek answer bits. From now on we refer to this modi�ed s
heme. The 
orresponding SPIR s
heme we
onstru
t is formally des
ribed as follows:Queries: The user sends to ea
h database DBj a query ~uj as in the original s
heme. In addition,the user pi
ks random tuples ~i0;~i1;~
0;~
1 2 GF(q)s su
h that ~i0 +~i1 =~i and ~
0 + ~
1 = ~
, and sends~i0;~
0 to DB1 and ~i1;~
1 to ea
h of DB2; : : : ;DBk.Answers: Let r1; r2; : : : ; rk be independent random bits (in
luded in the databases' shared ran-domness), and let r denote their ex
lusive-or. Ea
h database DBj replies with a0j def= aj � rj, whereaj is its answer a

ording to the modi�ed s
heme. In addition, the databases use their sharedrandomness to dis
lose the bit r, subje
t to a 
onjun
tion of the following 
onditions: (1) for every3 � j � k, the shares of ~i and ~
 sent to DBj are identi
al to those sent to DB2; (2) for every1 � m � s, either i0m + i1m = 0 or i0m + i1m = 1 (where ibm denotes the m-th entry of the b-th shareof ~i); and �nally (3) for every 1 � j � k and 1 � m � s, �j(
0m + 
1m) + (i0m + i1m) = ujm. Notethat the above 
ondition may be expressed by a Boolean formula over O(ks) = O(log logn) atomi

onditions, ea
h testing equality between two elements of GF(q) known to two di�erent databases.For instan
e, if j > 1 then verifying the 
ondition �j(
0m + 
1m) + (i0m + i1m) = ujm is equivalent to
omparing �j
0m + i0m, whi
h is known to DB1, and ujm� �j
1m� i1m, whi
h is known to DBj. Using27
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Theorem 2, the 
onditional dis
losure of r 
an be implemented with 
ommuni
ation 
omplexity andshared randomness 
omplexity of O(log2 n � log logn).Re
onstru
tion: The user re
onstru
ts r, and 
omputes xi as the ex
lusive-or of a01; : : : ; a0k andr. The 
orre
tness and the user's priva
y of the original s
heme are 
learly maintained. To see thedata-priva
y of this s
heme, 
onsider two possible 
ases. If the user's queries are valid, then thetuple (a01; a02; : : : ; a0k; r) is uniformly distributed among all (k + 1)-tuples over GF(2) whi
h add upto xi, implying that the answer distribution depends only on xi. Otherwise, the user obtains noinformation on r, and 
onsequently a01; : : : ; a0k (whi
h are uniformly and independently distributedover GF(2)) are independent of the 
onditional dis
losure messages. It follows that in the latter
ase the user obtains no information on x.Ex
luding the 
onditional dis
losure of r, the 
ommuni
ation 
omplexity of the s
heme is dom-inated by the query 
omplexity, whi
h is O(log2 n � log logn). Together with the 
omplexity ofdis
losing r, whi
h is dis
ussed above, the entire s
heme requires O(log2 n � log logn) 
ommuni
a-tion and shared randomness bits.6 Con
lusion and ExtensionsWe have presented a methodology whi
h allows to implement 
ommuni
ation eÆ
ient SPIR s
hemes,requiring only one round of intera
tion and withstanding any dishonest behavior of the user. Thismethodology may be useful for dealing with other variants of the basi
 PIR question, as we demon-strate in this se
tion, as well as in other 
ryptographi
 s
enarios. In the following we show how toextend our results in two dire
tions: dealing with retrieval of blo
ks instead of single-bit re
ords;and dealing with t-priva
y, namely priva
y against 
oalitions of up to t 
olluding databases. Wealso present an appli
ation whi
h using our methodology for SPIR, and in parti
ular the 
ondition-al dis
losure of se
rets primitive, 
an be implemented quite eÆ
iently. This appli
ation, termedprivate retrieval with 
osts, allows a user to privately retrieve (in a single round) any 
olle
tion ofdata items, provided that their total 
ost does not ex
eed what it had previously paid for.6.1 Blo
k Retrieval SPIR s
hemesSo far, we have restri
ted our attention to retrieval of single bits rather than multi-bit re
ords, alsoreferred to as blo
ks. In this subse
tion we show how results from the previous se
tions 
an beextended to yield blo
k-retrieval SPIR s
hemes.We start by observing that for PIR s
hemes generality is not lost when only single bit retrievalis 
onsidered: any PIR s
heme for single bit retrieval may simply be invoked ` times in parallelto retrieve a blo
k of ` bits. However this argument does not 
arry on to SPIR s
hemes, be
ausea 
heating user may invoke the s
heme on ` bits whi
h do not belong to the same re
ord, thusobtaining information about more than one physi
al blo
k. Therefore, we des
ribe a modi�
ationof the above pro
edure whi
h works for single round SPIR s
hemes.Given a single round SPIR s
heme where the user 
an retrieve a single bit out of the n-bit datastring, one 
an 
onstru
t a (single round) SPIR s
heme to retrieve an `-bit re
ord from a data stringof n su
h re
ords as follows: the user sends queries as in the original bit-retrieval s
heme, and the28
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databases reply ` times to the user's queries, on
e for ea
h bit of the re
ord. Ea
h su
h reply allowsthe user to learn a single bit of the sele
ted re
ord, and sin
e the user generates queries only on
eit is guaranteed that the ` bits that it learns indeed form a single re
ord of the database.The above transformation from single-bit to multi-bit retrieval is not appli
able for multi-roundSPIR s
hemes, sin
e the same set of queries 
annot be used multiple times for di�erent re
ord bits(queries for ea
h bit must depend on replies re
eived in previous rounds). On the other hand, formulti-round s
hemes, our general PIR to SPIR transformation of Se
tion 3 may be extended towork for multi-bit blo
k retrieval, by letting ea
h entry of the shared random string r 
onsist of `bits instead of a single bit. The proto
ols and their proofs 
an be modi�ed in a straightforwardway to support this extension. In addition, note that all our spe
i�
 SPIR s
hemes (Se
tions 4,5)are single round, and thus may be used for blo
k retrieval by the above transformation. This isalso true for our general SPIR s
heme (Se
tion 3), when used with an underlying single round PIRs
heme (whi
h is the 
ase for most PIR s
hemes known in the literature).6.2 t-private SPIR s
hemesIn the general redu
tion des
ribed in Se
tion 3, even if the original PIR s
heme P is t-private forsome t > 1, the resultant SPIR s
heme SP will still only be 1-private. This is be
ause if DB0
olludes with any other database DBj, the joint view of these two 
olluding databases in
ludesboth the shift � and the shifted index i0 = (i��)modn, from whi
h the user's index i 
an easilybe re
overed. Generalizing the 
onstru
tion of SP , a t-private SPIR s
heme StP 
an be obtainedfrom any t-private PIR s
heme P as follows. Instead of dire
tly asking DB0 for the (i��)-th bit ofthe shared random string r, the user 
an retrieve this bit by re
ursively invoking the (t� 1)-privateSPIR s
heme St�1P with a \fresh" set of databases. As a basis S0P for this re
ursion, we may takethe trivial 1-database s
heme in whi
h the user expli
itly asks for the desired index. In parti
ular,the (k + 1)-database 1-private s
heme des
ribed in Se
tion 3 may be viewed as the se
ond level ofthe re
ursion. In general, for any t-private k-database PIR s
heme P, applying this re
ursion yieldsa t-private (kt+ 1)-database SPIR s
heme SP whose 
ommuni
ation 
omplexity is roughly t timesthat of our original (1-private) s
heme.In the following generalization of Theorem 3 we show that the number of databases in the t-private SPIR s
heme 
an be redu
ed to k + t, at the expense of in
reasing 
ommuni
ation by afa
tor of �k+t�1t�1 �.Theorem 8. Let P be any 1-round, k-database, t-private PIR s
heme with 
ommuni
ation
omplexity (�k(n); �k(n)). Then, there exists a 1-round, (k+t)-database, t-private SPIR s
hemeSP with 
ommuni
ation 
omplexity (O(m(�k(n) + dlog2 ne); O(m�k(n))) and shared randomness
omplexity O(mn), where m = �k+t�1t�1 �.Proof. A t-private SPIR s
heme SP using K = k + t databases DB1; : : : ;DBK is des
ribed inthe following. The 
onstru
tion uses a 
olle
tion F = fS1; : : : ; Sm; Sm+1g � 2[K℄ of database setssu
h that:� Sm+1 is a singleton;� ea
h other set Sh, 1 � h � m, is of size k;� for any set T � [K℄ of size t, there exists a set S 2 F su
h that T \ S = ;.29
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Su
h F exists with m = �k+t�1t�1 �. E.g., let Sm+1 = fKg, and for any subset T � [K℄ of size t su
hthat K 2 T , let ST = [K℄ n T . 9An honest-user SPIR s
heme 
an now pro
eed as follows (where all a
tions are performed usingone round of 
ommuni
ation):� The user U pi
ks m random shift amounts �1;�2; : : : ;�m 2 Zn;The databases hold m shared random strings r1; : : : ; rm, of length n ea
h, and let r0 = xdenote the data string.� For 1 � j � m, U sends �j to ea
h database in Sj, and invokes the PIR s
heme P withdatabase set Sj to privately retrieve the bit bj in position ij def= i � Pj�1h=1�j (mod n) ofrj�1 � (rj >> �j). (Noti
e that in parti
ular, i1 = i);� U expli
itly asks the single database in Sm+1 for the bit bm+1 in position im+1 def= i �Pmh=1�h (mod n) of rm;� U re
onstru
ts xi by taking the ex
lusive-or of the m+ 1 bits b1; : : : ; bm; bm+1.We now show that the s
heme is 
orre
t, and that it satis�es both priva
y requirements. Itfollows by indu
tion that for h = 1; 2; : : : ; m, b1 � b2 � � � � � bh = xi � (rh)ih+1, and so (b1 � b2 �� � � � bm)� bm+1 = (xi � (rm)im+1)� bm+1 = xi. This proves the 
orre
tness of the s
heme.To prove the user's priva
y, 
onsider the view of a 
ollusion T of t databases. Sin
e P is t-private, invo
ations of P involving members of T do not dis
lose any information about i. The onlypotential sour
e of information about i are those messages from the set f�1;�2; : : : ;�m; im+1g thatare viewed by members of T . However, the de�nition of F guarantees that the 
ollusion T will onlyview a proper subset of these messages, whi
h 
ontains no information on i.To prove the data-priva
y (against an honest user), it suÆ
es to show that given any shiftamounts �1; : : : ;�m and position im+1 pi
ked by the user, the random variable�x� (r1 >> �1); r1 � (r2 >> �2); r2 � (r3 >> �3); : : : ; rm�1 � (rm >> �m); (rm)im+1� ;where the strings r1; : : : ; rm are uniformly and independently distributed over f0; 1gn, depends onlyon the single data bit xi, where i = im +P�h. This 
an be proved by iterating the argument usedin the proof of Theorem 1. Letting r0 = x, it 
an be shown by ba
kward indu
tion on h that forh = m�1; m�2; : : : ; 0, the joint distribution (rh�(rh+1 >> �h+1); rh+1�(rh+2 >> �h+2); : : : ; rm�1�(rm >> �m); (rm)im+1) is independent of rh given (rh)ih, where ih = im+1 + �m + �m�1 + : : : +�h+1 (mod n). In parti
ular, for i = 0 we obtain the desired result.Finally, the same 
onditional dis
losure me
hanism used in the proof of Theorem 3 
an be usedhere as well to guarantee data-priva
y against any (possibly dishonest) user. Spe
i�
ally, in anyinvo
ation of P involving database set Sh, ea
h answer should be dis
losed subje
t to the 
onditionthat all 
orresponding shift amounts sent by the user are equal. The above analysis shows that thissuÆ
es to guarantee data-priva
y.Aside from the 
onditional dis
losure proto
ol, the 
ommuni
ation in the resultant s
heme SPinvolves m invo
ations of the s
heme P, m extra logn-bit query strings, and one extra answer bit.9It is not hard to observe that the des
ribed F is of minimal 
ardinality, and that it 
annot exist at all for Ksmaller than k + t. However, by in
reasing the number of databases K, the 
ardinality of F 
an be de
reased. Forinstan
e, m 
an be made as low as t when K = tk + 1, 
orresponding to the re
ursive s
heme des
ribed above.30
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The 
onditional dis
losure proto
ol indu
es a 
onstant multipli
ative 
ommuni
ation and sharedrandomness overhead. This gives the 
ommuni
ation and randomness bounds stated in the theorem.6.3 Private Retrieval with CostsIn this subse
tion we brie
y sket
h how the 
onditional dis
losure of se
rets methodology 
an beused together with an underlying SPIR s
heme to implement private retrieval with 
osts.Let i1; : : : ; im denote the indi
es of the data re
ords whi
h the user wishes to retrieve,10 
 denotea publi
 ve
tor of `-bit integral 
osts (an n-tuple whose i-th entry 
i 
ontains a binary representationof the 
ost of the i-th data re
ord (0 � 
i � 2`� 1)), and p denote a publi
 
ost threshold (i.e., theamount of money paid by the user). A s
heme for private retrieval with 
osts allows the user toretrieve the data re
ords indexed by i1; : : : ; im privately (namely without giving the database anyinformation about i1; : : : ; im), provided that Pmh=1 
ih � p (i.e. the total 
ost of the re
ords does notex
eed the amount pre-paid by the user); on the other hand, it should not allow the user to obtainany information whi
h does not follow from su
h valid set of re
ords.The following is a high-level des
ription of a generi
 implementation of su
h a s
heme, usingan underlying (1-round) SPIR s
heme S. Without loss of generality (but possibly with a small
omplexity overhead), we may assume that the re
onstru
tion fun
tion applied by the user in Sdepends on the answers alone, and not on the index i or its random input �. (See Remark 3; also,noti
e that this is already the 
ase with the s
hemes B00k 
onstru
ted in Se
tion 5.) The s
heme 
anthen pro
eed as follows.Queries: The user 
hooses independently, for ea
h desired retrieval index ih of x (1 � h � m), a k-tuple of queries a

ording to the s
heme S. It sends to ea
h of the k databases the m 
orrespondingmessages (all in parallel).Answers: Ea
h database lo
ally 
omputes two answers to ea
h of the user's queries: one by
onsidering x as the data string, and the other by 
onsidering the 
ost ve
tor 
 as the data string(more pre
isely, 
 is 
onsidered as ` n-bit ve
tors and the ` answers 
an be used to 
onstru
t the `-bit entry 
ih). Then, the databases 
onditionally dis
lose their x-answers subje
t to an appropriate
ondition on the 
-answers. That is, the 
ondition on the 
-answers should assert that the sumof the 
osts re
onstru
ted from these answers (ea
h of whi
h 
an be obtained by applying there
onstru
tion fun
tion of S) is no larger than the publi
 threshold p.The 
omplexity of realizing 
onditional dis
losure as above 
an be kept low in the following ways.First, it is better to use an underlying s
heme S whose re
onstru
tion fun
tion is 
omputationallyeasy (this is the 
ase with the s
hemes 
onstru
ted in this paper). Se
ond, it is possible to fa
ilitatethe realization of dis
losures under \
ompli
ated" 
onditions by requiring the user to send a witnessto the validity of its queries, whi
h will serve as an additional input to the 
ondition. In this setting,the general upper bounds given in Theorem 2 
an be extended to apply to nondeterministi
 formulasor span programs, yielding eÆ
ient 
onditional dis
losure proto
ols whenever the 
ondition 
an be
omputed by an eÆ
ient 
ir
uit. Indeed, letting the witness supplied by the user 
onsist of allintermediate gate values, it is possible to verify that the 
ir
uit evaluates to 1 using a Boolean10m will be dis
losed to the database as an upper bound on the number of data re
ords that the user wishes toretrieve. If the user wants to retrieve less than m re
ords, the rest of the indi
es will point to a dummy re
ord of
ost 0. 31
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formula whose size is linear in the 
ir
uit size. Sin
e addition of m `-bit integers 
an be 
omputedby a 
ir
uit of size O(`m), the amount of 
ommuni
ation required for dis
losing ea
h answer bit11is O(`m) plus m times the size of 
ir
uitry required for re
onstru
ting the sele
ted 
osts from the
-answers.A
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A Ne
essity of Shared RandomnessA.1 Shared Randomness is Ne
essary for SPIRIn this se
tion we show that the addition of a shared randomness resour
e to the basi
 PIR settingis in a sense minimal.Suppose we allow the databases to use private randomness in answering the user's queries, butwe still do not allow them to intera
t without the mediation of the user (and in parti
ular we donot allow them to share a random string unknown to the user). We argue that in this setting,(information-theoreti
) SPIR 
annot be implemented at all, regardless of its 
omplexity, even whenthe user is honest.Claim 2. There exists no (multi-round) k-database SPIR s
heme without dire
t intera
tionbetween di�erent databases, even if the databases are allowed to hold private and independentrandom inputs, and the user is honest.Proof. Sin
e the user's view in
ludes all of the 
ommuni
ation, the strong priva
y requirementimplies that any single database DBj 
annot respond to the user's queries in a way that dependson the data string x. Formally, at any round the distribution of DBj's answer given the previous
ommuni
ation 
annot depend on x. For otherwise, this answer distribution must either not followfrom a single bit xi, thus violating the data-priva
y requirement, or alternatively reveal to DBjthe index i on whi
h it depends, thus violating the user's priva
y. The independen
e of privaterandom inputs held by di�erent databases implies that given previous 
ommuni
ation the answersof di�erent databases must be independently distributed. Combining the observations made abovewe have that the joint distribution of all k answers given previous 
ommuni
ation is independentof x. Fixing an index i, it follows by indu
tion on the number of rounds that for any w > 0 thea

umulated 
ommuni
ation in the �rst w rounds is distributed independently of x. This impliesthat the user's output 
annot depend on the value of xi, 
ontradi
ting the 
orre
tness requirement.As a spe
ial 
ase of Claim 2 we may 
on
lude the following:Corollary 2. There exists no single-database (information-theoreti
) SPIR s
heme.We note that Corollary 2 
an also be derived from known results about two-party 
omputation[13, 22, 2℄.A.2 Shared Randomness in General Redu
tion from SPIR to PIRWe have shown above that the resour
e of shared randomness is ne
essary in order for SPIR to bea
hievable. In Se
tion 3 we have presented general transformations from PIR to SPIR using linearshared randomness, and in Se
tions 4 and 5 spe
i�
 transformations using about the same sharedrandomness as the 
ommuni
ation 
omplexity.A natural question 
on
erning the general transformations is whether their shared randomness
omplexity 
an be redu
ed, possibly as a fun
tion of their 
ommuni
ation 
omplexity. We nowargue that if we want the general redu
tion to apply to any PIR s
heme, then its shared randomness
omplexity (in the information-theoreti
 honest user 
ase) is in a sense minimal; that is, the uniform34
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distribution on f0; 1gn from whi
h the shared random string is 
hosen 
annot be repla
ed by adistribution on f0; 1gn whose entropy is less than n. It is straightforward to observe that this isthe 
ase with the trivial 1-database PIR s
heme in whi
h the database sends the entire data stringto the user; the following 
laim indi
ates that this is also the 
ase for PIR s
hemes with arbitrarilysmall 
ommuni
ation 
omplexity.Claim 3. Any PIR s
heme of whi
h one answer bit gives the Boolean \OR" of all data bitsrequires the shared random string r in the s
heme of Theorem 1 to be uniformly distributed overf0; 1gn.Proof. Let R denote the distribution on f0; 1gn from whi
h r is pi
ked, and suppose that R isnot uniform; for n � 2, it easily follows that there exist y; y0 2 f0; 1gn and an index i 2 [n℄ su
h thatyi = y0i, and Pr[R = y℄ 6= Pr[R = y0℄. Let SRP denote the s
heme SP 
onstru
ted in the proof ofTheorem 1 with the shared random string r distributed a

ording to R, and 
onsider an invo
ationof SRP in whi
h the user's retrieval index is i and the spe
i�ed shift is � = 0. Now, observe that inthis invo
ation the user 
an distinguish between the data strings y and y0, asPr[ _j2[n℄(y � R)j = 0℄ = Pr[R = y℄6= Pr[R = y0℄ = Pr[ _j2[n℄(y0 �R) = 0℄:By the 
orre
tness of SRP , the user must also learn the i-th data bit, implying that it obtains morethan a single physi
al bit of data.
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