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Proteting Data Privay in Private Information RetrievalShemes�Yael Gertnery Yuval Ishai z Eyal Kushilevitzx Tal Malkin{AbstratPrivate Information Retrieval (PIR) shemes allow a user to retrieve the i-th bit of an n-bitdata string x, repliated in k � 2 databases (in the information-theoreti setting) or in k � 1databases (in the omputational setting), while keeping the value of i private. The main ostmeasure for suh a sheme is its ommuniation omplexity.In this paper we introdue a model of Symmetrially-Private Information Retrieval (SPIR),where the privay of the data, as well as the privay of the user, is guaranteed. That is, inevery invoation of a SPIR protool, the user learns only a single physial bit of x and no otherinformation about the data. Previously known PIR shemes severely fail to meet this goal. Weshow how to transform PIR shemes into SPIR shemes (with information-theoreti privay),paying a onstant fator in ommuniation omplexity. To this end, we introdue and utilizea new ryptographi primitive, alled onditional dislosure of serets, whih we believe maybe a useful building blok for the design of other ryptographi protools. In partiular, weget a k-database SPIR sheme of omplexity O(n1=(2k�1)) for every onstant k � 2, and anO(log n)-database SPIR sheme of omplexity O(log2 n � log logn). All our shemes requireonly a single round of interation, and are resilient to any dishonest behavior of the user.These results also yield the �rst implementation of a distributed version of �n1�-OT (1-out-of-n oblivious transfer) with information-theoreti seurity and sublinear ommuniationomplexity.1 IntrodutionPrivate Information Retrieval (PIR) shemes allow a user to retrieve information from a databasewhile maintaining its query private. In this model, the database is viewed as an n-bit string x outof whih the user retrieves the i-th bit xi, while giving the database no information about the indexi. The main ost measure for suh shemes is their ommuniation omplexity. The notion of PIR�A preliminary version of this work appeared in STOC '98.yDepartment of Computer and Information Siene, University of Pennsylvania, Philadelphia, PA 19104, USA.e-mail: ygertner�saul.is.upenn.edu. Supported by DARPA grant DABT63-96-C-0018.zDepartment of Computer Siene, Tehnion, Haifa 32000, Israel. e-mail: yuvali�s.tehnion.a.ilxDepartment of Computer Siene, Tehnion, Haifa 32000, Israel. e-mail: eyalk�s.tehnion.a.il URL:http://www.s.tehnion.a.il/�eyalk{Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cambridge, MA 02139. e-mail:tal�theory.ls.mit.edu. Supported by DARPA grant DABT63-96-C-0018.1
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was introdued in [12℄, where it was shown that if there is only one opy of the database availablethen n bits of ommuniation are needed (for information-theoreti user-privay). However, if thereare k � 2 non-ommuniating opies of the database, then there are solutions with muh better(sublinear) ommuniation omplexity.In this paper, we introdue the stronger model of Symmetrially Private Information Retrieval(SPIR), where privay of the data, as well as of the user, is guaranteed. That is, every invoation ofa SPIR sheme, in addition to maintaining the user's privay, prevents the user (even a dishonestone) from obtaining any information other than a single physial bit of the data. Data privay isa natural and ruial requirement in many settings. For example, onsider a ommerial databasewhih sells information, suh as stok information, to users, harging by the amount of data thatthe user retrieved. Here, both user-privay and data-privay are essential.The original PIR model was only onerned with user-privay, without requiring any protetionof data-privay. Indeed, previous PIR shemes allow the user to obtain other physial bits of thedata (i.e., xj for j 6= i) or other information suh as the exlusive-or of ertain subsets of thebits of x. A good example of where this happens is a single invoation of the best 2-databaseinformation-theoreti sheme urrently known [12℄, from whih a user an systematially retrieve�(n1=3) physial bits of data (see Setion 5, Example 2).To eÆiently realize SPIR shemes, we introdue and utilize a new ryptographi primitive,alled \onditional dislosure of serets", whih may also be of independent interest as a buildingblok for designing more general ryptographi protools. Informally, onditional dislosure ofserets allows a set of players to dislose a seret to an external party Carol, subjet to a givenondition on their joint inputs. In the setting we onsider, Carol knows all the inputs held bythe players exept for the seret to be onditionally dislosed, so she knows whether the onditionholds and whether she will obtain the seret. Eah player on the other hand only sees its portionof the input and does not neessarily know whether Carol will obtain the seret. The protoolinvolves only a unidiretional ommuniation from the players to Carol. A simple example thatillustrates the use of \onditional dislosure of serets" is one in whih eah player has the input bitbi, indiating whether it agrees to reveal the seret s to Carol. Carol obtains the seret s subjetto the ondition that the majority of the players agree to reveal the seret.This work is onerned with the information-theoreti setting for SPIR. The tehniques used inthis work an also be applied to omputational PIR shemes (.f. [11, 23, 10℄), in whih the privayrequirement is relaxed to omputational privay (against omputationally bounded databases).However, in this omputational setting a better solution for realizing SPIR may be onstruted usingpseudo-random funtions [24, 14℄. We note that in addition to their theoretial signi�ane andtheir unonditional seurity, information theoreti shemes possess other advantages over knownomputational shemes; they are muh more time-eÆient, and their ommuniation omplexityis typially smaller for moderately sized data strings (even when their asymptoti omplexity ishigher).Realizing SPIR involves a modi�ation to the previous multi-database model. This is neessarybeause information-theoreti SPIR shemes, regardless of their omplexity, annot possibly beahieved in the original PIR setting, in whih the databases do not interat with eah other atall (see Appendix A.1). We thus use a minimal extension of the original setting: ontinue todisallow diret interation between the databases, but grant them aess to a shared random string,unknown to the user. A similar kind of extension has been studied before in the ontexts of privateomputation [16, 18℄, non-interative zero-knowledge [6℄ and other senarios. Here, this extension2
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is partiularly natural sine, even in the basi PIR setting, databases are required to maintainidential opies of the same data string. (In the next subsetion we disuss an alternative approahof using shared pseudo-random strings rather than sharing truly random strings.)1.1 Our ResultsWe onstrut eÆient SPIR shemes, with sublinear ommuniation omplexity, whih may be evenfurther improved if better PIR shemes are designed. More preisely, we present transformationsfrom PIR shemes to SPIR shemes, preserving the user's privay and guaranteeing data-privayas well, with a small penalty in the ommuniation omplexity. We give two types of redutions.A General Redution We show that using any PIR sheme it is possible to onstrut a SPIRsheme with the same number of rounds, a onstant fator overhead in ommuniation omplexity,and linear (in n) shared randomness (per query). The resultant SPIR sheme requires the use ofan additional auxiliary database, whih does not need to hold the original data (only the sharedrandom string). That is, we ahieve:� (k+1)-database SPIR sheme of ommuniation omplexity O(C(n)), for any k-database PIRsheme of omplexity C(n).However, the additional database requirement may be ostly. In partiular, it does not allowto obtain an information-theoreti sublinear SPIR solution with only 2 databases. This ase isimportant, sine 2 is the minimal number of databases required for suh a solution to exist. Indeed,via more spei� redutions we manage to avoid the additional database, and in partiular obtain agood solution for the 2-database ase. Moreover, these spei� redutions require signi�antly lessshared randomness.Spei� Redutions We present redutions whih exploit spei� strutural properties of exist-ing PIR shemes to transform them into SPIR shemes whih use the same number of databasesas the underlying PIR sheme, ommuniation omplexity whih is at most a small onstant fatorover the PIR sheme, and shared randomness omplexity (per query) whih is of the same orderof magnitude as the ommuniation omplexity. In partiular, extending shemes from [12, 1℄ weobtain:� k-database SPIR sheme of omplexity O(n1=(2k�1)) for any onstant k � 2;� O(logn)-database SPIR sheme of omplexity O(log2 n � log logn).Our shemes maintain the general paradigm of existing PIR shemes: all databases hold an identialopy of x, and all protools use a single queries-answers round.If one is willing to settle for omputational privay of the data (while still maintaining theinformation-theoreti privay of the user) then we an also onsider a slight variation of the model,by replaing the shared random strings with pseudo-random ones. More spei�ally, the databasesmay share a short random seed from whih longer shared pseudo-random strings an be generated\on the y", without extra ommuniation [7, 28℄. This allows the databases to save storage spaeand save on the amount of random bits they need to produe. We also remark that by using pseudo-random funtions [17℄ it is possible for the databases, in eah exeution of the protool, to diretly3



www.manaraa.com

expand from the seed only the portion of the expanded string that is needed for this partiularexeution (without atually expanding the whole string).Our results, as of most ited PIR works, onentrate mainly on the ase of 1-privay. The moregeneral notion of t-privay requires that the view of any ollusion of t databases is independentof the user's retrieval index i. A generalization of our SPIR protools that satis�es this strongert-privay requirement is desribed later in the paper (Subsetion 6.2).Note that we restrit our attention to retrieval of single bits, rather than the retrieval of bloksonsisting of multi-bit reords. In Subsetion 6.1 we address blok retrieval, and show that forsingle-round shemes, onentrating on single-bit reords does not ompromise generality. We thendesribe how to generalize our results for multi-round shemes as well, ahieving SPIR for multi-bitreords.Finally, an interesting observation is that the SPIR problem may be viewed as a distributedversion of a known ryptographi primitive alled �n1�-Oblivious-Transfer (OT) [25, 15, 8, 9℄. An�n1�-OT protool allows Bob to seretly hoose one of n seret bits held by Alie, in a way that atthe end of the protool Bob learns only a single bit of his hoie, and Alie learns nothing aboutBob's hoie. The results of our work give the �rst 1-round distributed implementations of �n1�-OTwith information-theoreti seurity and sublinear ommuniation omplexity. Sine �n1�-OT is auseful tool for ryptographi protool design, it is our hope that SPIR might also be found a usefultool for the design of ryptographi protools.1.2 Related WorkPrivate information retrieval (with information-theoreti user privay) was introdued in [12℄, wherethe shemes ahieve ommuniation omplexity of O(n1=3) bits with 2 databases; O(n1=k) bits withk � 3 databases; and O(log2 n log logn) bits with k = O(logn) databases. In [1℄ the k-databaseupper bound is improved to O(n1=(2k�1)) for any onstant k (see [19℄ for improved dependene on kand generalization to t-privay).The omputational ounterpart of PIR (i.e., shemes where the user-privay is only with respetto polynomial-time databases, relying on ertain intratability assumptions) was �rst onsideredin [11℄; they show how to obtain shemes with ommuniation omplexity O(n) (for any onstant > 0) for k=2 databases, assuming the existene of one-way funtions. The �rst omputational PIRsheme for a single database was obtained in [23℄, ahieving ommuniation omplexity O(n) (forany onstant  > 0), under the quadrati residuosity assumption. A single-database omputationalPIR with polylogarithmi ommuniation omplexity is presented in [10℄, under a new intratabilityassumption alled the �-hiding assumption. All the above shemes require only a single round ofqueries and answers. In [4℄ it is shown that a neessary assumption for any single database PIRwith less than n ommuniation omplexity, is the existene of one-way funtions. In [14℄ this resultis strengthened to show that oblivious transfer is neessary for PIR.Subsequent to our work, the omputational ounterpart of SPIR has been addressed in [24, 14℄,showing an eÆient transformation from (single-database, low ommuniation) PIR to SPIR (in [24℄a transformation is onstruted assuming a 1-out-of-2 oblivious transfer primitive, and in [14℄ theassumption is removed by onstruting this primitive from PIR).4
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1.3 OrganizationIn Setion 2 we introdue notations and basi de�nitions. In Setion 3 we show a general trans-formation of PIR shemes into SPIR shemes, inluding the introdution of \onditional dislosureof serets" in Subsetion 3.2. The following setions present spei� shemes, whih outperformthe ones obtained by applying the general transformation. Setion 4 inludes SPIR shemes whihrely on the user being honest. In Setion 5 we present shemes whih keep the data private fromany, possibly dishonest, user (with a minor extra ommuniation ost). Setion 6 ontains exten-sions and generalization of our results: Subsetion 6.1 generalizes the results for blok retrieval ofmulti-bit reords; Subsetion 6.2 generalizes the results to shemes with higher levels of user-privay(that is, privay against oalitions of databases); and Subsetion 6.3 outlines a generalization ofSPIR, alled private retrieval with osts, where our tehniques and results an be used. Finally,Appendix A.1 ontains a proof of the impossibility of SPIR in the usual PIR setting (without diretinteration between the databases or shared randomness), and Appendix A.2 gives a lower boundon the amount of shared randomness neessary for our general PIR to SPIR transformation.2 Preliminaries2.1 General Notations and De�nitionsThe following notations and onventions are used throughout the paper. Let [`℄ denote the setf1; 2; : : : ; `g and Z` def= f0; 1; : : : ; `� 1g denote the additive group of residues modulo `. For any twosets S; S 0, let S�S 0 denote the symmetri di�erene between S and S 0 (i.e., S�S 0 = (SnS 0)[(S 0nS)).For a set S � [`℄ let �S denote the harateristi vetor of S: an `-bit binary string whose j-th bitis equal to 1 i� j 2 S. To simplify notation, S � j and �j are used instead of S � fjg and �fjg,respetively. For any binary string � 2 f0; 1gd, let weight(�) denote the number of nonzero entriesin � (in partiular 0 � weight(�) � d). For any n-tuple y and index set B � [n℄, let yjB denotethe restrition of y to its entries with indies from B. By default, whenever referring to a randomhoie of an element from a �nite domain A, the assoiated distribution is uniform over A, andthis random hoie is independent of all other random hoies. Finally, addition and multipliationoperations will sometimes be arried over a �nite �eld or group, as implied by the ontext.A Boolean funtion h : f0; 1gm!f0; 1g is alled monotone if for every A;B � [m℄ s.t. A � B,if h(�A) = 1 then also h(�B) = 1. A Boolean formula over the variables y1; : : : ; yn is a labeledbinary tree, whose leaves (representing inputs) are labeled by literals from fy1; y1; : : : ; yn; yng, andwhose internal nodes (representing boolean operators) are labeled by \^" or \_". Suh a formulaomputes a Boolean funtion h : f0; 1gn ! f0; 1g in the natural way. A formula is said to bemonotone if all of its leaves are labeled by positive literals (whih implies that the funtion that theformula omputes is monotone). Finally, the size of a formula is measured by the number of leaves.2.2 PIR ShemesLet k denote the number of databases, DBj (for 1 � j � k) denote the j-th database, x denotean n-bit data string whih is held by eah of the k databases, U denote the user, and i denote theposition (also alled index) of a data bit whih the user wants to retrieve (1 � i � n).5
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A PIR sheme is a randomized protool between U and DB1; : : : ;DBk, where U has an aessto a random input �, unknown to the databases, and DB1; : : : ;DBk have aess to a shared randominput r, unknown to the user1. In eah round of the protool messages are exhanged between theuser and the databases: queries are sent from the user to eah database, and answers are sent fromeah database to the user.2 The view of the user in the protool, denoted viewU(x; i; r; �), onsistsof its input i, its random input �, and all the answers reeived from the k databases during theexeution of the protool (with inputs x; i; r; �). Similarly, the view of the j-th database, denotedviewj(x; i; r; �), onsists of the data string x, the shared random input r, and all the queries sent fromthe user to DBj during the exeution of the protool. At the end of the exeution, the user appliessome reonstrution funtion 	 to its view and outputs the orresponding value 	(viewU(x; i; r; �)).A party (user or database) in a PIR sheme is alled honest if it follows the protool's spei�-ation. When the user U interats with (possibly dishonest) databases DB�1; : : : ;DB�k, we denotethe view of the j-th database by view�j(x; i; r; �). Similarly, when the k databases DB1; : : : ;DBkinterat with a (possibly dishonest) user U� we denote the view of the user by view�U(x; i; r; �).A (1-private, information-theoreti) PIR sheme is a protool as above, whih satis�es thefollowing two requirements:(1) orretness: When both the user and the k databases are honest, the user always reonstrutsthe data bit xi. That is, for every x; i; r; � as above,	(viewU(x; i; r; �)) = xi:(2) user-privay: The view of any single database is independent of the retrieval index i. Formally,for any (possibly dishonest) databases DB�1; : : : ;DB�k interating with the (honest) user U , forany shared random input r, any data string x, any two retrieval indies 1 � i; i0 � n, anydatabase index 1 � j � k, and any view viewj of DB�j ,Pr� [view�j(x; i; r; �) = viewj℄ = Pr� [view�j(x; i0; r; �) = viewj℄ :It should be noted that the de�nition of PIR shemes in the literature does not allow for a sharedrandomness between the databases. However, in the ontext of PIR the de�nitions are equivalent.It is only in the SPIR ontext where the shared-randomness beomes ruial.2.3 SPIR ShemesA SPIR sheme is a PIR sheme suh that in any invoation of the sheme, the user annot learnany information whih doesn't follow from a single physial bit of data. Formally, a SPIR shemeshould satisfy, in addition to the orretness and the user-privay requirements, the following thirdrequirement:(3) data-privay: For any (possibly dishonest) user U� interating with the honest databasesDB1; : : : ;DBk,and for any random input � held by U�, and any i0, there exists an index i, suh that for everydata strings x; y satisfying xi = yi, and every view view of U�,Prr [view�U(x; i0; r; �) = view℄ = Prr [view�U(y; i0; r; �) = view℄ :1It is assumed, without loss of generality, that all databases are otherwise deterministi.2As is the ase in most of the PIR literature, we will mostly be interested in single-round shemes. The followingde�nitions may take a slightly simpler form when the shemes are restrited to a single round.6



www.manaraa.com

Let us argue that the above de�nition yields the \intuitive notion" of data privay. The intuitivenotion that we want to apture is that the user annot learn any information about the data whihdoes not follow from a single physial bit. One may be tempted to require that for any user U�there exists a single index i, suh that the view of U� is independent of the data string x givenxi. However, this (stronger) variant of the de�nition annot be satis�ed. To see that, onsider aSPIR sheme S satisfying this latter requirement, and onsider a user U� whih starts by randomlyhoosing an index i, and then proeeds to run aording to S with retrieval index i. Clearly, there isno single index i suh that the view of suh user depends on xi alone. What our de�nition requiresis that, for every random string � held by the user, the user must (expliitly or impliitly) �x anindex i suh that its view depends only on xi.3 Finally, note that an equivalent formulation of thedata-privay requirement is the following one: For any deterministi user U�, there exists an indexi, suh that the user's view is independent of the data string x given xi.An honest-user SPIR sheme is a PIR sheme that satis�es the data-privay requirement withrespet to U , the honest (but urious) user, whih follows the sheme's spei�ation but may try todedue extra information from the ommuniation.Notie that the above formulation of the model is only onerned with answering a single retrievalquery made by a single user. Multiple queries (possibly originating from di�erent users) maybe handled by independent repetitions of the single-query sheme, where in eah invoation thedatabases use an independent soure of shared randomness (or a \fresh" portion of a single sharedrandom string).By default, the terms \PIR sheme" and \SPIR sheme" refer to 1-round, 1-query, informationtheoretially private shemes.2.4 ComplexityThe main omplexity measure for PIR and SPIR shemes is their ommuniation omplexity. Theommuniation omplexity of a k-database sheme will be denoted (�k(n); �k(n)), where �k(n) isthe total number of query bits sent from the user to all k databases and �k(n) is the total numberof answer bits sent from all k databases to the user, when the data string is of size n. We sometimesuse a single parameter to measure the ommuniation omplexity of a given sheme, whih is thetotal ommuniation omplexity �k(n) + �k(n).The shared randomness omplexity of a SPIR sheme is de�ned as the entropy of the sharedrandom input r (whih equals to the length of the string r in the ase it is uniformly distributedover all strings of some �xed length).Finally, while the de�nitions in Subsetions 2.2 and 2.3 do not address the aspet of omputa-tional eÆieny, all protools onstruted in this work will also be omputationally eÆient (thatis, polynomial in n).3Also note that if the user has some a-priori information regarding the data string x (e.g., that xj = xi) then theretrieval of xi, together with its a-priori information, may give it information about other bits of x; this is obviouslyunavoidable.
7
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3 A General Redution from SPIR to PIRIn this setion we present a onstrution of a SPIR sheme by using any PIR sheme as a blak-box. This onstrution introdues an overhead of a single auxiliary database, a onstant fator inommuniation omplexity, and a linear amount of shared randomness over the orresponding PIRsheme. The auxiliary database need not hold a opy of the data string x; it only needs to haveaess to the shared random string r.More spei�ally, we present two general redutions. The �rst is with respet to an honestuser and osts only an additive logarithmi fator in ommuniation omplexity (Subsetion 3.1).The seond strengthens the �rst to deal with any user, possibly dishonest (Subsetion 3.3). Thelatter is onstruted by utilizing a new ryptographi primitive, alled \onditional dislosure ofserets" (introdued in Subsetion 3.2), whih will also be used in later setions. We note that bothredutions (Theorems 1 and 3) are stated and proved for a single round PIR, but an be generalizedto apply to PIR shemes with any number of rounds.3.1 A General Redution with Respet to Honest UsersTheorem 1. Let P be any 1-round k-database PIR sheme with ommuniation omplexity(�k(n); �k(n)). Then, there exists a 1-round (k+1)-database honest-user SPIR sheme SP withommuniation omplexity (�k(n) + (k+1)dlog2 ne; �k(n) + 1), and shared randomness omplexityn.Proof. To simplify notation, assume that the index i is taken from the set Zn = f0; 1; : : : ; n� 1g(rather than from [n℄). The sheme SP involves k databases DB1; : : : ;DBk, orresponding todatabases of the original sheme P, and an auxiliary database DB0. All databases share a randomstring r 2 f0; 1gn. The sheme SP proeeds as follows:Queries: First the user piks queries q1; : : : ; qk as spei�ed by the PIR sheme P, and independentlypiks a random shift amount � 2 Zn. Then the user sends to eah DBj, for 1 � j � k, the same shiftamount �j = �, along with the query qj. Finally, the user sends the shifted index i0 def= (i��)modnto DB0.Answers: Eah database DBj, for 1 � j � k, loally omputes a \virtual data string" x0 def= x �(r >> �), where � denotes bitwise exlusive-or, and r >> � denotes a yli shift of the randomstring r by � plaes to the right. Then, DBj answers the query qj as it would do in the originalPIR sheme P with respet to the omputed string x0. Finally, the auxiliary database DB0 replieswith the single bit ri0 .Reonstrution: The user reonstruts xi by �rst reonstruting from the answers ofDB1; : : : ;DBka bit bP aording to PIR sheme P, and then omputing the exlusive-or of this bit with the bitri0 reeived from DB0.By the orretness of P, we have bP = x0i. Therefore, the reonstrution step of SP yieldsbP � ri0 = x0i � ri0 = (xi � ri0) � ri0 = xi, whih proves the orretness of SP . The user's privayfollows from the privay of P, and from the fat that eah of the additional queries � and i0 isuniformly distributed in Zn, independently of the P-queries q1; : : : ; qk. Finally, to show that thesheme SP meets the data-privay requirement with respet to the honest user, we will use thefollowing, more general, laim. 8
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Claim 1. Let q = hi0; (q1;�1); (q2;�2); : : : ; (qk;�k)i be any (k+ 1)-tuple of queries (possibly, butnot neessarily, piked by an honest user). Moreover, suppose that �1 = �2 = � � � = �k def= �.Then, the joint answers of DB0; : : : ;DBk to their orresponding queries in q are independent of xgiven xi0+� (where the probability spae is over the hoie of r, and where the sum i0 +� is takenmodulo n).Proof. Let x0 def= x�(r >> �). Note that x0 is the virtual data string omputed by eah databaseDBj, 1 � j � k, in the proess of answering to its own query from q, i.e., qj. Now, onsider thejoint distribution of (x0; ri0). This distribution is uniform over the setf(y; b) : y 2 f0; 1gn; b 2 f0; 1g; yi0+� � b = xi0+�g ;thus depending only on xi0+�. Sine x0 determines the answers of DB1; : : : ;DBk given the query-tuple q, and sine ri0 is the answer of DB0, it follows that the joint distribution of all answers givensuh query-tuple q depends on xi0+� alone.Claim 1 implies that the distribution of the view of an honest user, given that it holds input iand random input �, depends only on a single data bit, beause an honest user sets �1 = �2 =� � � = �k = �. This shows the data-privay of SP with respet to an honest user, and onludesthe proof of Theorem 1.Note that in the above sheme SP , a dishonest user an either send invalid P-queries, or senddi�erent shifts �j to di�erent databases. However, by Claim 1, only the latter dishonest behaviorould potentially give the user more information on the data. In other words, if the user sends thesame shifts to all databases, then data-privay will always be maintained, regardless of the validityof the other queries. Thus, to extend this sheme for a dishonest user, it would suÆe to have thedatabases (eah of whih sees only a single �j) send their answers disguised so that the user learnsthe answers only if the ondition �1 = : : : = �k is satis�ed. To this end, we use the primitive of\onditional dislosure of serets", introdued in the next subsetion.A natural question regarding the above transformation is whether its shared randomness om-plexity may be redued. A partial answer to this question is given in appendix A.2, where it isshown that for our transformation to be general (i.e. appliable to any underlying PIR sheme),the shared n-bit string used there must be uniformly distributed over f0; 1gn, namely linear sharedrandomness is required regardless of the ommuniation omplexity of the underlying PIR sheme.Finally, we note that Claim 1 implies that if P is the trivial 1-database PIR sheme in whihthe entire data string is being sent to the user, then the 2-database SPIR sheme SP onstrutedabove is resilient also against a dishonest user. We thus have:Corollary 1. There exists a 1-round, 2-database SPIR sheme S�2 with ommuniation omplexity(2dlog2 ne; n + 1), and shared randomness omplexity n.While this sheme S�2 is ineÆient on its own, as it requires linear ommuniation omplexity,it will be used as a subprotool (with small data strings) in our later onstrutions.3.2 Conditional Dislosure of SeretsIn this subsetion we desribe and implement a new ryptographi primitive, alled onditionaldislosure of serets (or CDS for short). This primitive is then used in the next subsetion to obtaina general redution from SPIR to PIR withstanding any user behavior.9
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Informally, the onditional dislosure setting involves k players, eah holding some input, andan external party Carol, who knows all inputs held by the players. In addition, there is a seret swhih is known to at least one of the players but not to Carol. The goal is for the players to dislosethe seret to Carol, subjet to a given ondition on their joint input (namely if the ondition holds,Carol learns the seret, and if it doesn't she obtains no information about the seret). The modelallows all the players to have aess to a shared random string (hidden from Carol), and the onlyommuniation allowed is a single unidiretional message sent from eah player to Carol. A simpleexample illustrating the use of CDS is one in whih eah player has an input bit bi 2 f0; 1g, andthe ondition for dislosing the seret to Carol is that the majority of the players' bits are set to 1.A formal de�nition is given below. For onveniene, we start by de�ning a version where theseret s to be dislosed is known to all players (we all this version onditional dislosure of aommon seret).Let h : f0; 1gn!f0; 1g be a �xed boolean funtion (the ondition); let B1; : : : ; Bk be a partitionof [n℄ into k sets (eah Bj � [n℄ is alled the j-th player input portion); and let SD be some seretdomain (e.g., all binary strings of a partiular length). A onditional dislosure of a ommon seretfor the ondition h, input partition B1; : : : ; Bk, and seret domain SD, onsists of a set of k playersP1; : : : ; Pk (modeled as funtions) and (an external party) Carol, as follows. Let r denote a sharedrandom input of the players, drawn from some distribution R. For any �xed y = y1 : : : yn 2 f0; 1gn(the input), s 2 SD (the seret), and 1 � j � k, we de�ne a random variable mj = Pj(yjBj ; s; r)(the j-th player message), where the randomness is over the hoie of r. Then the following twoonditions must hold:1. orretness: For every y 2 f0; 1gn, if h(y) = 1, then 8s; r, Carol(y;m1; : : : ; mk) = s. Thatis, if the ondition holds, then Carol is always able to reonstrut the seret s from her inputand the messages she reeived.2. serey: For every y 2 f0; 1gn, if h(y) = 0, then for any s0; s1 2 SD the k-tuples of randomvariables Dms0j = Pj(yjBj ; s0; r)Ekj=1 and Dms1j = Pj(yjBj ; s1; r)Ekj=1 are identially distributed(where the probability is over the hoie of r). That is, if the ondition does not hold, Carolobtains no information about the seret s (the messages reeived by Carol are identiallydistributed for any two possible serets s0 and s1).A similar version an be de�ned when the seret s is known to at least one of the players (notneessarily to all of them). In this ase we let mj = Pj(yjBj ; r) for players Pj who do not hold s(their message is onstruted only based on their portion of the input and the shared randomness).We all this (more general) version onditional dislosure of a seret.The ommuniation omplexity of a onditional dislosure protool is the maximal total size ofall messages sent by the players (over the hoies of r), and its shared randomness omplexity is theentropy of R.We note that the model of onditional dislosure is similar to the non-interative model of privateomputation from [16℄, whih is desribed in Subsetion 4.2. Known results in that (in a sense moregeneral) model are suÆient to yield some solutions to the onditional dislosure problem. Forinstane, results of [16, 18℄ imply onditional dislosure protools with ommuniation whih isquadrati in the size of a branhing program or a formula desribing the ondition h (see Remark 2for disussion). However, the solutions obtained via these general results are usually not eÆient10
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enough for our purposes. Instead, we show below how to ahieve muh more eÆient solutions,whih use ommuniation at most linear in the size of h.3.2.1 Redution to Generalized Seret SharingIn the following we show how to implement onditional dislosure of serets under an arbitraryondition by reduing it to generalized seret sharing [5, 20℄ relative to a orresponding aessstruture.Generalized seret sharing. The problem of generalized seret sharing is an extension of theusual notion of t-out-of-m seret sharing [26℄. Informally, a generalized seret sharing protool is arandomized protool for sharing a seret into m shares suh that the seret an be reonstrutedfrom any quali�ed set of shares, whereas any ombination of an unquali�ed set of shares shouldgive no information about the seret. Formally, a generalized seret sharing sheme with seretdomain SD is de�ned by a triple (D; R; C), where D (the dealing funtion) maps a seret s 2 SDand a random input r into an m-tuple of shares hs1; : : : ; smi, R is the distribution from whih therandom input r is hosen, and C (the reonstrution funtion) maps a set A � [m℄ and an jAj-tuple of shares into a reonstruted seret s 2 SD. The olletion of quali�ed sets is spei�ed by amonotone Boolean funtion hM : f0; 1gm!f0; 1g, alled an aess struture, where a set A � [m℄of shares is said to be quali�ed if hM(�A) = 1 and otherwise is said to be unquali�ed. The shemeS = (D; R; C) is said to be a generalized seret sharing sheme realizing the aess struture hM ifit satis�es the following two requirements: (1) orretness: for any quali�ed set A � [m℄, everyseret s 2 SD, and every random input r, the reonstrution sueeds; that is, C(A;D(s; r)jA) = s;and (2) serey: for any unquali�ed set A � [m℄ and serets s1; s2 2 SD, the random variablesD(s1; r)jA and D(s2; r)jA are identially distributed (where the probability is over the hoie of r,distributed aording to R). Finally, the share omplexity of S is the maximum total size of allshares in an m-tuple D(s; r), and its randomness omplexity is the entropy of R.Lemma 1. Let hM : f0; 1gm!f0; 1g be a monotone Boolean funtion. Let h : f0; 1gn!f0; 1gbe a Boolean funtion de�ned by h(y1; : : : ; yn) = hM(g1; : : : ; gm), where eah gi depends on a singlevariable yj; that is, gi 2 fy1; y1; : : : ; yn; yng for 1 � i � m (suh h will be referred to as a projetionof hM ). Let S be a generalized seret sharing sheme with seret domain SD realizing the aessstruture hM , with share omplexity � and randomness omplexity . Then, for any partitionB1; : : : ; Bk among k players of the inputs to h, there exists a protool P for dislosing a ommonseret s 2 SD subjet to the ondition h, with ommuniation omplexity � and shared randomnessomplexity .Proof. Reall that the CDS protool P involves players P1; : : : ; Pk eah holding a portionof the input y = y1; : : : ; yn (player Pj holds Bj) and the seret s 2 SD. The players wish toreveal their seret to Carol subjet to the ondition h(y) = 1. We show how to onstrut Pusing the generalized seret sharing sheme S = (D; R; C) realizing the aess struture hM , wherehM(g1; : : : ; gm) = h(y1; : : : ; yn)The protool P uses a shared random string r distributed aording to R, and proeeds asfollows. First, eah player Pj evaluates D(s; r), generating an m-tuple of shares hs1; : : : ; smi (notethat all players generate the same shares, sine they use the same seret and the same random input11
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when evaluating D). Next, for eah i 2 [m℄, player Pj inludes the share si in the message sent toCarol if and only if the following two onditions hold: (1) gi is \owned" by Pj (i.e., gi is either yl oryl for some l 2 Bj); and (2) gi evaluates to 1. That is, the message sent to Carol by the player Pjonsists of the restrition of the shares hs1; : : : ; smi to those whih satisfy the above two onditions.Observe that sine eah input variable yl is held by some player, Carol reeives exatly thoseshares si for whih gi = 1. By this observation, if hM(g1; : : : ; gm) = 1 then Carol has exatly the sifor whih gi = 1, whih aording to the de�nition of generalized seret sharing is a quali�ed set ofshares, and an thus reonstrut the seret s (using the reonstrution funtion C). On the otherhand, if hM(g1; : : : ; gm) = 0 then Carol reeives an unquali�ed set of shares, and hene gains noinformation about s. To omplete the proof, reall that hM(g1; : : : ; gm) = h(y1; : : : ; yn); thus, Carolan reonstrut s whenever the ondition h(y) holds, and otherwise obtains no information on s.Finally, the shared randomness omplexity of P is the same as the randomness omplexity ofS, and the ommuniation omplexity of P is no larger than the share omplexity of S (sine eahshare is sent by at most one player).We now use Lemma 1 to obtain an upper bound on the omplexity of onditional dislosure ofserets, depending on the size of a formula omputing the ondition. The proof of the followingtheorem will use a known result about the omplexity of generalized seret sharing.Fat 1. [5℄ Suppose that hM : f0; 1gm!f0; 1g an be omputed by a monotone Boolean formulaof size S. Then, there exists a generalized seret sharing sheme realizing hM with SD = f0; 1g,whose ommuniation omplexity and shared randomness omplexity are bounded by S.Theorem 2. Suppose that h : f0; 1gn ! f0; 1g an be omputed by a Boolean formula of size S,and let SD = f0; 1g. Then, for every partition B1; : : : ; Bk of the inputs to h,1. there exists a protool P for dislosing a ommon seret bit s 2 SD (known to all players)subjet to the ondition h, with ommuniation omplexity and shared randomness omplexitybounded by S.2. there exists a protool P 0 for dislosing a seret bit s 2 SD (known to at least one player)subjet to the ondition h, with ommuniation omplexity and shared randomness omplexitybounded by S + 1.Proof. A protool P for onditional dislosure of a ommon seret bit s known to all playersis onstruted as follows. Let H be a Boolean formula over the variables y1; : : : ; yn omputing h,whose size is S. Replaing eah negative literal yj with a positive literal wj, we obtain a monotoneBoolean formula HM of size S omputing a monotone funtion hM(y1; : : : ; yn; w1; : : : ; wn). Notethat h is a projetion of hM , sine h(y1; : : : ; yn) = hM(y1; : : : ; yn; y1; : : : ; yn). Using Fat 1, it followsfrom Lemma 1 that the players an dislose the bit s subjet to the ondition h using at most Sommuniation bits and at most S shared random bits, whih ompletes the proof of the �rst partof the theorem.For the seond part, a protool P 0 for onditional dislosure of a seret bit s known to at least oneplayer, proeeds as follows. The players �rst onditionally dislose a shared random bit r0, known toall of them, subjet to the ondition h. This is done using the protool P desribed above. Finally,a single player holding s sends the bit s� r0 to Carol. Clearly, if Carol an reonstrut r0 then shean also reonstrut s, and if she obtains no information on r0 then she an obtain no informationon s, and the theorem follows. 12
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Remark 1. Using best known general upper bounds on the omplexity of generalized seretsharing [21℄, the result of Theorem 2 an be strengthened to apply to any funtion h with a spanprogram over GF(2) of size S (see [21℄ for a de�nition of the span program model).3.2.2 Diret Construtions for Speial CasesIn the sequel, the onditional dislosure primitive will be used in our redutions for dealing withdishonest behavior of the user. These appliations of onditional dislosure require only a sim-ple ondition (e.g., testing equality between inputs). Therefore, in the following we give diretonstrutions of onditional dislosure protools realizing these spei� onditions. These diretonstrutions are more eÆient than the ones obtained by a straightforward appliation of The-orem 2. We stress though that the more general results desribed above are still useful in otherryptographi senarios, suh as the one desribed in Subsetion 6.3.The next lemma shows an eÆient implementation of onditional dislosure of serets, wherethe ondition tests whether the sum of k �eld elements equals 0. Later it will mostly be used withk = 2, to implement onditional dislosure of serets where the ondition tests for equality betweentwo strings.Lemma 2. Let F be a �nite �eld (all arithmeti operations below are in this �eld). Suppose thateah of k players Pj holds an input yj 2 F , and that a seret s 2 F is known to at least one player.Then, there exists a protool for dislosing the seret s subjet to the ondition \Pkj=1 yj = 0" inwhih eah player sends a single �eld element, and whose shared random string onsists of k random�eld elements.Proof. Assume without loss of generality that player Pk holds the seret s, and let r0; r1; :::; rk�1be independent random elements of F , shared by the parties. The protool an then proeed asfollows:� Eah player Pj, 1 � j � k � 1, sends to Carol the single �eld element mj def= yjr0 + rj;� The player Pk sends to Carol mk def= s+ ykr0 �Pk�1j=1 rj.First, note that if all inputs yj add up to 0, then s an be reonstruted as the sum of all messagesmj: kXj=1mj = k�1Xj=1(yjr0 + rj) + s + ykr0 � k�1Xj=1 rj = s+ r0 kXj=1 yj = s:We now show that if P yj 6= 0, the k-tuple of messages (m1; : : : ; mk) is uniformly distributed overF k independently of s. For any sequene of messages m1; : : : ; mk 2 F k, we de�ne its support as theset of all hoies r0; r1; : : : ; rk�1 whih make the players send this sequene of messages to Carol(when the inputs are y1; : : : ; yk and the seret is s). By the onstrution of the protool, the supportonsists of exatly all r0; r1; : : : ; rk�1 satisfying the system of equationsy1r0 +r1 = m1y2r0 +r2 = m2...yk�1r0 +rk�1 = mk�1ykr0 �r1 : : : �rk�1 = mk � s13
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This is a system of k linear equations in the k variables r0; r1; : : : ; rk�1. When P yj 6= 0 the kequations are linearly independent, sine adding the �rst k � 1 equations to the last one yield atriangular system of equations. Therefore, any sequene of messages m1; : : : ; mk 2 F k has a supportwhih is a singleton, and in partiular all sequenes have the same size support. This implies thatthe uniform distribution of the �eld elements r0; r1; : : : ; rk�1 indues a uniform distribution of themessages m1; : : : ; mk over F k, for any input tuple y1; : : : ; yk with nonzero sum and any seret s 2 F .Note that the above lemma outperforms the general onstrution of Theorem 2. Using thegeneral onstrution, the ommuniation and randomness required for dislosing a single bit seretis larger than the total size of k �eld elements (whih is a lower bound on the size of a formulaevaluating the ondition), whereas in the spei� onstrution of Lemma 2 ommuniation andrandomness of this size are suÆient for the dislosure of a longer seret, namely a �eld element.The following lemma shows that it is possible to further redue the ommuniation to be dominatedby the seret size, even when the seret is smaller than the inputs.Lemma 3. Suppose that eah of k players holds an input string4 yj 2 f0; 1g`, and a seret strings 2 f0; 1gm is known to at least one player. Then, there exists a protool for dislosing the seret ssubjet to the ondition \Lkj=1 yj = 0`" in whih eah player sends a string of length m, and whoseshared randomness omplexity is k �max(`;m).Proof. For a �nite �eld F = GF(2w), we use a standard representation of �eld elements byw-bit strings, suh that eah element of F is represented by the oeÆient vetor of the polynomialassoiated with it. (Reall that an element of GF(2w) may be identi�ed with a polynomial overGF(2) of degree � w � 1, modulo some irreduible degree-w polynomial). Suh a representationde�nes an isomorphism between the groups hF;+i and hf0; 1gw;�i.We now onsider two possible ases. If ` � m, then the protool from the proof of Lemma 2an be used as is, letting F = GF(2m), and assoiating the seret s with the orresponding �eldelement and eah input string yj 2 f0; 1g` with the �eld element orresponding to its m-bit paddingyj0m�`.In the seond ase (` > m), we use the same protool with F = GF(2`), exept that eah �eldelement sent in the original protool is projeted to the m leftmost bits of its representation; thatis, if mj is the �eld element originally sent by Pj and is represented by the string �1�2 � � ��`, thenthe message sent from Pj to Carol in the new protool would be the m-bit pre�x �1�2 � � ��m. Akey observation is that, under the above representation, the projetion operator ommutes withthe �eld addition. Hene, the sum of all `-bit projetions sent in the new protool is equal to theprojetion of Pkj=1mj. It follows from the above observation and from the analysis in the proof ofLemma 2 that if the ondition \Lkj=1 yj = 0`" holds, then s an be reonstruted as the exlusive-orof all messages. On the other hand, if the ondition does not hold, then the original k messagesare uniformly and independently distributed over F , from whih it follows that the projeted m-bitmessages are independently and uniformly distributed over f0; 1gm. This proves the orretnessand serey of this protool.Finally, sine in both ases eah player sends a message string of length m, the spei�edommuniation bound is met, and sine in both ases the protool of Lemma 2 is invoked withF = GF(2max(`;m)), the spei�ed shared randomness bound is met as well.4The lemma is formulated for binary strings, but an be generalized to strings over any �nite �eld.14
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In partiular, the result of Lemma 3 an be applied with k = 2 for onditionally dislosing aseret s subjet to a ondition whih tests equality of strings held by two players. This protoollearly outperforms any protool obtainable via the general result of Theorem 2; indeed, sinetesting equality between `-bit strings requires a formula of size �(`), the best protool obtainablevia Theorem 2 would require �(`) ommuniation bits for onditionally dislosing a single bitsubjet to equality between two `-bit strings (ompared to only 2 ommuniation bits required usingLemma 3). The improved eÆieny obtained via Lemma 3 will be used in the next subsetion.3.3 A General Redution with Respet to Dishonest UsersUsing the onditional dislosure of serets primitive desribed above, the following theorem givesa general redution from any PIR sheme to a SPIR sheme for the ase of any user (possiblydishonest).Theorem 3. Let P be any 1-round k-database PIR sheme with ommuniation omplexity(�k(n); �k(n)). Then, there exists a 1-round, (k+1)-database SPIR sheme S�P with ommuniationomplexity at most (�k(n)+(k+1)dlog2 ne ; 2�k(n)+1), and shared randomness omplexity O(n+�k(n)).Proof. Let SP be the protool from the general (honest-user) redution of Theorem 1. ByClaim 1, SP satis�es data-privay as long as the user sends to every database DBj the same shiftamount �j. Thus we make S�P be the following modi�ation of SP , e�etively foring the user tosend the same shifts.The user's queries are the same as in SP , and so are the answers of DB0 (the auxiliary database)and DB1. In addition, for eah 2 � j � k, we let DBj and DB1 dislose the original SP -answerof DBj subjet to the ondition �j = �1 (where �j is the dlog2 ne-bit shift sent to DBj). Thisonditional dislosure is implemented using Lemma 3.The user-privay in the original SP is learly maintained. The sheme S�P meets the data-privayrequirement, sine the use of onditional dislosure guarantees that the (possibly dishonest) userwill obtain information only on answers of databases DBj suh that �j = �1, whih by Claim 1implies that the user learns at most a single physial bit of data. Hene, S�P is indeed a SPIRsheme.We now analyze the omplexity of this sheme. For eah 0 � j � k we let �jk(n) denotethe length of the answer sent by DBj in the sheme SP . By Theorem 1, we know that �0k = 1and that Pkj=0 �jk(n) = �k(n) + 1. Using Lemma 3, the ommuniation omplexity required toimplement the onditional dislosure subprotool involving the databases DB1 and DBj in thesheme S�P is 2�jk(n). The total ommuniation sent from all databases to the user is therefore�0k(n) + �1k(n) + Pkj=2(2�jk(n)) � 1 + 2Pkj=1 �jk(n) = 1 + 2�k(n). The total ommuniation sentfrom the user is the same as in SP , namely �k(n) + (k + 1)dlog2 ne. The shared randomnessomplexity is the same as in SP plus the randomness required by Lemma 3, whih sums up ton+ 2Pkj=2max(2dlog2 ne; �jk(n)) = O(n+ �k(n)).In subsequent setions we present SPIR shemes whih rely on spei� strutural properties ofsome underlying PIR shemes, and exploit them to outperform the above general transformations.In partiular, they use sublinear shared randomness, and do not require an auxiliary database.15
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4 Spei� SPIR Shemes with Respet to Honest UsersIn this setion we onstrut honest-user SPIR shemes whih perform as well as their PIR oun-terparts, up to a multipliative onstant, both in terms of ommuniation and randomness. Ouronstrutions utilize two primitives: private simultaneous messages protools (desribed below),and onditional dislosure of serets (introdued in Subsetion 3.2 above). Sine our shemes relyon spei� PIR shemes from the literature, we �rst review some details of those PIR shemes whihare important for our onstrutions.4.1 Some Known PIR ShemesWe start by desribing a PIR sheme from [12℄, referred to as the basi ube sheme. This shemeis the basis for the 2-database sheme B2 from [12℄, also desribed below, whih in turn servesas the basis for the reursive k-database sheme Bk from [1℄. The shemes Bk and the polynomialinterpolation sheme of [12, 3℄ are desribed later on, in the proofs of Theorems 6 and 7 respetively.Basi d-dimensional Cube Sheme: This is a PIR sheme for k = 2d databases. Assumewithout loss of generality that the database size is n = `d, where ` is an integer. The indexset [n℄ an then be identi�ed with the d-dimensional ube [`℄d, where eah index i 2 [n℄ an benaturally identi�ed with a d-tuple (i1; : : : ; id). A d-dimensional subube is a subset S1 � � � � � Sdof the d-dimensional ube, where eah Sm is a subset of [`℄. Suh a subube is denoted by thed-tuple C = (S1; : : : ; Sd). The k(= 2d) databases are assigned all of the binary strings of length d,DB�8� 2 f0; 1gd. The sheme proeeds as follows.Queries: The user piks a random subube C = (S01 ; : : : ; S0d), where S01 ; : : : ; S0d are independentrandom subsets of [`℄. Let S1m = S0m � im (1 � m � d), where i = (i1; : : : ; id) is the index thatthe user wishes to retrieve. For eah � = �1�2 � � ��d 2 f0; 1gd, the user sends to database DB� thesubube C� = (S�11 ; : : : ; S�dd ), where eah set S�mm is represented by its harateristi `-bit string.Answers: Eah database DB�, � 2 f0; 1gd, omputes the exlusive-or of the data bits residing inthe subube C�, and sends the resultant bit b� to the user.5Reonstrution: The user omputes xi as the exlusive-or of the k bits b�'s it has reeived.The sheme's orretness follows from the fat that every bit in x exept xi appears in an evennumber of sububes C�, � 2 f0; 1gd, while xi appears in exatly one suh subube (see [12℄ fordetails). The ommuniation omplexity of this 2d-database sheme is O(n1=d), muh worse thanthe following sheme B2 and its generalization Bk, whih ahieves ommuniation O(n1=(2k�1)) fora onstant number of databases k.The sheme B2: This sheme may be regarded as a 2-database implementation of the basi8-database (3-dimensional) ube sheme desribed above. Let ` = n1=3, and let i = (i1; i2; i3) be theindex of the data bit being retrieved. Eah of the two databases DB000 and DB111 emulates the 4databases DB�, � 2 f0; 1g3, suh that the Hamming distane of � from its own index is at most 1.This is done in the following way. The user sends to DB000 the subube C000 = (S01 ; S02 ; S03) and toDB111 the subube C111 = (S11 ; S12 ; S13) as in the basi ube sheme. We would like the answers of5The exlusive-or of an empty set of bits is de�ned to be 0.16
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eah of the two databases to inlude the 4 answer bits of the 4 databases it emulates. To this end,DB000 replies with its own answer bit b000 along with 3 `-bit long strings, eah of whih ontainsthe answer bit of one of the other databases it emulates. For instane, the i01-th bit of the stringemulating DB100 is obtained by omputing the exlusive-or of all data bits residing in the subube(S01 � i01; S02 ; S03), implying that the i1-th bit in this string is equal to b100. Symmetrially, DB111sends the single bit b111 along with 3 `-bit long strings, eah of whih orresponds to the sububesobtained from C111 by \masking" the set S1m with all ` possible values of im. Altogether, the userreeives 8 answer strings a�; � 2 f0; 1g3, six of whih ontain ` bits eah, and the other two (namely,a000 and a111) ontain single bits. In eah of the `-bit long strings, the required answer bit b� anbe found in either the i1 bit of the string (for � = 100; 011), the i2 bit (for � = 010; 101), or the i3bit (for � = 001; 110). Sine the user an loate all 8 bits b�, � 2 f0; 1g3, in the answer strings, itan reonstrut xi by omputing their exlusive-or.4.2 The Private Simultaneous Messages (PSM) ModelIn a typial PIR sheme, the honest user an extrat from the databases' answers more informationthan just the reonstruted value xi. Towards solving this problem, we use the following idea.Consider any 1-round PIR sheme. In an exeution of suh sheme, the user �rst produes k queriesq1; : : : ; qk, depending on the index i. It then sends eah query to the orresponding database andin response reeives k answer strings a1; : : : ; ak. Finally, the user applies a reonstrution funtion	 to obtain the desired bit xi. Our idea is to have the user ompute the output of 	 withoutatually getting the answers a1; : : : ; ak, from whih it an obtain more information, but rather getsome other messages m1; : : : ; mk that keep the privay of the string x.Preisely this idea is aptured by the model of non-interative private omputation introduedin [16℄ and further studied in [18℄, alled the Private Simultaneous Messages (PSM) model. Inthis model there are k players, eah player Pj holding a private input string yj, and an externalreferee alled Carol. All players have aess to a shared random input, whih is unknown to Carol.The goal of a PSM protool is to let Carol evaluate a funtion f(y1; : : : ; yk) without learning anyadditional information about the inputs y1; : : : ; yk. The senario of the PSM protool is similar to aonditional dislosure protool (see Subsetion 3.2), exept that in PSM there is no input to Carol,and there is no other input to the players exept y1; : : : ; yk. More formally, in a PSM protool eahplayer Pj sends a single message to Carol, based on its private input yj and the shared random input,and Carol applies some reonstrution funtion to the k messages she reeived. A PSM protoolomputing a k-argument funtion f must satisfy the following requirements: (1) orretness: forany input tuple y = (y1; : : : ; yk) and any shared random input, the value reonstruted by Carolis f(y); and (2) privay: given any two input tuples y = (y1; : : : ; yk); y0 = (y01; : : : ; y0k) suh thatf(y) = f(y0), the messages viewed by Carol are identially distributed.The ommuniation omplexity and the shared randomness omplexity of a PSM protool arede�ned as in the onditional dislosure of serets model. We denote the ommuniation omplexityof a k-player PSM protool by k(m), where m is the total number of input bits held by the kplayers, and its shared randomness omplexity by dk(m).In [16, 18℄ several upper bounds on PSM omplexity are obtained. In partiular, it is shown thatany Boolean funtion with a branhing program of size S(m) (with any partition of the m inputbits among k players) an be omputed by a PSM protool whose ommuniation omplexity andshared randomness omplexity are O(k �S(m)2) [18℄. In general, this quadrati overhead will turn17
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out to be too expensive for our purposes. However, some funtions do admit simple PSM protoolswith linear omplexity as we see in the following lemma.Lemma 4. Let (G;+; 0); (H; ~+; ~0) be �nite Abelian groups, and f :Gk ! H be a linear funtion(that is, f((y1+z1); : : : ; (yk+zk)) = f(y1; : : : ; yk) ~+f(z1; : : : ; zk) for all (y1; : : : ; yk); (z1; : : : ; zk) 2 Gk).Then, there exists a PSM protool omputing f whose ommuniation omplexity and sharedrandomness omplexity are no larger than m, where m is the total number of input bits to f .Proof. The PSM protool for f proeeds as follows. Eah player Pj masks its input yj with rj,setting wj def= yj + rj, where (r1; : : : ; rk) 2 Gk is a random shared tuple satisfying f(r1; : : : ; rk) = 0.Then, Pj sends the masked input wj to Carol. Carol an now ompute f(w1; : : : ; wk) = f((y1 +r1); : : : ; (yk + rk)) = f(y1; : : : ; yk) ~+f(r1; : : : ; rk) = f(y1; : : : ; yk) ~+~0 = f(y1; : : : ; yk), whih is thedesired output value. The privay of this protool follows by observing that for any input tupley = (y1; : : : ; yk) and message tuple w = (w1; : : : ; wk) suh that f(y) = f(w), there exists a uniquerandom input r (namely, r = w � y) suh that f(r) = 0 and the messages indued by the inputs yand the random input r are w. Therefore, every message tuple w suh that f(y) = f(w) has thesame size support (a singleton), implying idential distribution of all suh messages. Finally, theommuniation and shared randomness omplexity are learly as spei�ed.This lemma is used in the sequel, when the groups G;H are the binary strings of a �xed length,and the operation is � (exlusive-or).Remark 2. (CDS from PSM) Note that the onditional dislosure of serets (CDS) primitivedesribed in Subsetion 3.2 and used in Theorem 2 may be implemented (less eÆiently) usingPSM omputation. Spei�ally, dislosing a bit s subjet to a ondition g(y) may be redued tothe PSM omputation of the funtion f(y; s) = g(y) ^ s. Indeed, by the orretness of the PSMprotool for f , if g(y) = 1 then Carol an reonstrut s = g(y) ^ s. On the other hand, if g(y) = 0then, by the privay of the PSM protool, Carol's view is identially distributed under the inputs(y; 0) and (y; 1), implying that Carol learns nothing about s. However, the general upper bound onthe omplexity of onditional dislosure of serets, established by Theorem 2, is linear in the sizeof a formula (or a span program) omputing the ondition, whereas best known results on PSMomplexity yield a bound whih is quadrati in suh representation size. This is beause everyfuntion with formula size S(m) is also omputable by a branhing program of size S(m) + 1 (see[27, Chapter 14℄). This, as mentioned above, gives a PSM omplexity of O(S(m)2).4.3 SPIR Shemes Based on PSM and CDS ProtoolsIn this subsetion we use PSM and CDS protools to onstrut honest-user SPIR shemes. First, inlemma 5 we apply PSM solutions to a PIR sheme with a partiular type of reonstrution funtionin order to get an honest-user SPIR sheme. We then disuss the impliations of this lemma andprovide an example in whih it is used. This example and lemma are also helpful in our lateronstrutions, in partiular ones whih involve PIR shemes with a more general reonstrutionfuntion.Lemma 5. Suppose P is a 1-round k-database PIR sheme with ommuniation omplexity(�k(n); �k(n)), suh that: (1) the reonstrution funtion 	 depends only on the answers of the18
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databases, and (2) the funtion 	 an be omputed by a PSM protool whose ommuniationomplexity is k(m) and whose shared randomness omplexity is dk(n). Then, there exists a 1-roundk-database honest-user SPIR sheme S whose ommuniation omplexity is (�k(n); k(�k(n))) andwhose shared randomness omplexity is dk(�k(n)).Proof. A sheme S of the spei�ed omplexity an be obtained from P as follows. Theuser hooses queries q1; : : : ; qk as it does in the PIR sheme P and sends eah query qj to theorresponding database DBj. Eah database DBj omputes its answer aj as it would do in P, butinstead of sending the answer to the user, the databases (using their shared randomness) simulatethe PSM omputation of 	(a1; : : : ; ak). That is, eah database DBj sends to the user the messagethat player Pj would send to Carol in the PSM protool for 	. The orretness and privay of Sfollow from the orretness and privay of P and of the PSM protool for 	, and the omplexity islearly as stated.We stress that Lemma 5 only yields honest-user SPIR shemes; indeed, a dishonest user anpotentially generate \invalid" queries, suh that applying the reonstrution funtion to their an-swers gives forbidden information whih does not follow from any physial data bit. (Here the ideaof hiding the input to the reonstrution funtion will not help, sine the dishonest user may getinformation from the output of the reonstrution funtion). A diret appliation of Lemma 5 isgiven in the following example.Example 1. PSM-based honest-user SPIR sheme for the d-dimensional ube sheme..Consider the basi d-dimensional ube sheme from Subsetion 4.1, in whih the reonstrutionfuntion onsists of omputing the exlusive-or of the k answer bits sent from the databases. Thissheme does not maintain data-privay, sine the user learns the exlusive-or of k = 2d di�erentsubsets of data bits. In this ase, the extra information an be eliminated by applying Lemmas 4and 5. Spei�ally, instead of sending the original answer b�, eah database DB� will send a maskedanswer b� � r�, where r = r0���00r0���01 � � � r1���10 is a (k � 1)-bit shared random string, and r1���11 isomputed as the exlusive-or of the bits of r. Under the modi�ed sheme, an honest user's view isuniformly distributed among all k-tuples whose exlusive-or is L�2f0;1gd b�, whih by the sheme'sorretness is equal to the physial bit xi.Other PIR shemes with linear reonstrution funtion, to whih Lemma 5 is appliable withno ommuniation overhead, inlude the polynomial-interpolation shemes for O(logn) databasesof [12, 3℄, for whih (dishonest-user) SPIR ounterparts will be given in Subsetion 5.2.Remark 3. (On the generality of Lemma 5) Note that Lemma 5 requires that in theunderlying PIR sheme P, the reonstrution funtion depends only on the answers omputed bythe databases. While this is the ase with the basi ube sheme (see Example 1 above), this isnot the ase with the sheme B2, for instane, where reonstrution heavily depends on the indexi held by the user. In order to satisfy this requirement, any PIR sheme P, whose reonstrutionfuntion 	 may also depend on the the index i and the queries qj, may be augmented into a PIRsheme P 0, whose reonstrution 	0 depends only on the answers, as follows. First, the user seret-shares the index i between two databases independently of its original queries (e.g., by sendinga dlog2 ne-bit random string to one database and the exlusive-or of this random string with thebinary representation of i to the other database). Suh a sharing of i does not violate the user's19
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privay and introdues only a minor overhead on the query omplexity. Then, eah database DBjappends to its original answer aj the query qj it reeived (inluding the share of i). The originalreonstrution funtion 	 indues a reonstrution funtion 	0 for the augmented sheme P 0, whihdepends on the databases' answers alone. Hene, Lemma 5 an be applied to the augmented sheme.However, the omplexity of this solution an be prohibitive.In the remainder of this setion we derive an honest-user SPIR sheme from the 2-database PIRsheme B2.6 In this ase, it is possible to use the PSM methodology of Lemma 5 and Remark 3to eÆiently meet this goal. However, towards onstrutions in the next setions, we introdue analternative, oneptually simpler, methodology of using onditional dislosure of serets on top ofPSM. A similar methodology may also be useful in di�erent ontexts, as will be demonstrated inSubsetion 6.3.Theorem 4. There exists a 2-database honest-user SPIR sheme, B02, with ommuniationomplexity and shared randomness omplexity O(n1=3).Proof. Reall the PIR sheme B2 (see Setion 4.1) and, in partiular, its reonstrution funtionwhih may be viewed as a two-stage proedure: (1) the user selets a single bit from eah of 8answer strings, depending only on the index i = (i1; i2; i3); and (2) the user takes the exlusive-orof the 8 bits it has seleted to obtain xi. Thus, if we let the honest user learn only the exlusive-orof the 8 bits orresponding to i, the data-privay requirement will be met. This an be ahievedby using the onditional dislosure of serets primitive on top of a PSM protool omputing theexlusive-or of 8 bits. The sheme B02, an honest-user SPIR version of B2, proeeds as follows:Queries: The user sends the sububes C000 to DB000 and C111 to DB111, as in the sheme B2. Inaddition, the user independently shares the three harateristi vetors �im , m = 1; 2; 3, among thetwo databases. This is done by piking random `-bit strings i0m; i1m suh that i0m � i1m = �im andsending the three strings i0m to DB000 and the three strings i1m to DB111. 7Answers: Eah of the two databases omputes 3 answer strings of length n1=3 and 1 one bit answeras in the B2 sheme. Denote by a� the answer string emulating DB�, � 2 f0; 1g3. The databasestreat eah bit of a string a� as an input to a PSM protool omputing the exlusive-or of 8 bits,and using their shared randomness they ompute (but do not send) the PSM message sent for eahsuh bit. Under the simple PSM protool for XOR (see Lemma 4 or Example 1), eah suh messageis by itself a single bit. Let w� denote the string obtained by replaing eah bit from a� by itsorresponding PSM message bit. In this ase, w� is obtained by masking every bit of a� with thesame random bit r�, where the bits fr�g are 8 random bits whose exlusive-or is 0. Finally, forevery � 2 f0; 1g3 and 1 � j � jw�j, the databases use their shared randomness to dislose to theuser the j-th bit of w�, (w�)j, subjet to an appropriate ondition. For � = 100; 011 the onditionis (i01)j � (i11)j = 1, for � = 010; 101 it is (i02)j � (i12)j = 1, and for � = 001; 110 it is (i03)j � (i13)j = 1.The single bits w000; w111 an be sent in a plain form.6While it is possible to extend our onstrution to apply to Bk, the k-database generalization from [1℄, we postponethis generalization to the next setion, whih deals with the ase of a dishonest user.7When the user is honest, this extra sharing of �im is redundant sine the harateristi vetors of the sets S0m; S1msent by the user may be viewed as these shares; however, this presentation more losely resembles the solution for adishonest user, desribed in the the next setion. 20
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Reonstrution: The user reonstruts the eight PSM message bits orresponding to the indexi (using the reonstrution funtion of the onditional dislosure protool), and omputes theirexlusive-or to obtain xi.The orretness of the above sheme and the user's privay follow from the orretness and user'sprivay of the PIR sheme B2 and the orretness of the CDS and the PSM shemes used, and areeasy to verify. We turn to show that the sheme meets the data-privay requirement with respetto an honest user. We �rst introdue some notation. By A(x; i; r; �) we denote the 8-tuple of B2-answers a�, omputed by the databases in the exeution of B02 (or B2) indued by (x; i; r; �), wherex is the data string, i is the user's input query, r is the shared randomness of the databases, and� is the random input of the user. Similarly, by W (x; i; r; �) we denote the 8-tuple of PSM stringsw�, omputed by the databases in the orresponding exeution of B02. Finally, given an 8-tuplew = (w�)�2f0;1g3 and an index i, we let wji denote the restrition of w to the 8 bits orrespondingto the index i.Sine the user is honest and by the orretness of B2, the exlusive-or of the eight bits inA(x; i; r; �)ji is equal to xi. Thus, by the privay of the PSM protool for XOR, it follows that forany x; x0; i suh that xi = x0i, any � and z 2 f0; 1g8,Prr [W (x; i; r; �)ji = z℄ = Prr [W (x0; i; r; �)ji = z℄: (1)By the serey of the onditional dislosure protool and the independene of its shared randomnessfrom the PSM randomness, it follows that for any x; x0; i; �; v, and z 2 f0; 1g8 we have:Prr [viewU(x; i; r; �) = v j W (x; i; r; �)ji = z℄ = Prr [viewU(x0; i; r; �) = v jW (x0; i; r; �)ji = z℄: (2)Finally, ombining equations (1) and (2) we get that for any x; x0; i; �; v suh that xi = x0i:Prr [viewU (x; i; r; �) = v℄ = Xz2f0;1g8 Prr [viewU (x; i; r; �) = v j W (x; i; r; �)ji = z℄ � Prr [W (x; i; r; �)ji = z℄= Xz2f0;1g8 Prr [viewU (x0; i; r; �) = v j W (x0; i; r; �)ji = z℄ � Prr [W (x0; i; r; �)ji = z℄= Prr [viewU (x0; i; r; �) = v℄;onluding the proof of the data-privay property. (We note that while the above proof expliitlyrefers to all relevant random variables, in subsequent proofs of a similar nature suh detailed analysiswill be replaed by higher level arguments.)It remains to show that the sheme meets the spei�ed omplexity bounds. Sine the onditionfor dislosing eah of the O(n1=3) bits of the strings wj is of the form \ y1� y2 = 1" (or equivalentlyy1�y2 = 0), where y1; y2 are single bits, it follows from Lemma 3 (or Theorem 2) that all suh maskedanswer bits an be onditionally dislosed with total ommuniation and shared randomness ost ofO(n1=3) bits. Altogether, the ommuniation omplexity of the sheme and its shared randomnessomplexity are O(n1=3), as required.5 Spei� SPIR Shemes with Respet to Dishonest UsersIn the previous setion we were onerned with an honest but urious user. In this setion weonstrut SPIR shemes whih guarantee data-privay with respet to dishonest users as well. The21
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following example demonstrates the extra information that a dishonest user may obtain in ordinaryPIR shemes and in the honest-user SPIR sheme onstruted above.Example 2. Consider the sheme B2. Suppose that a user sends the subube C000 = (fi1g ; fi2g ;fi3g) as a (legitimate) query to the �rst database. Then, the answers of this database alone, whihinlude the bits x(i1;i2;i3), x(i1;i2;i3)�x(j;i2;i3), x(i1;i2;i3)�x(i1;j;i3), and x(i1;i2;i3)�x(i1;i2;j) for all j 2 [n1=3℄,reveal about 3n1=3 physial bits of data. Note that by randomly setting this query an honest useran also learn that many physial data bits, but this ours with only an exponentially smallprobability. Moreover, even in the sheme B02 (whih perfetly maintains data-privay for an honestuser), a dishonest user may similarly obtain �(n1=3) physial data bits. To do this, the user sendsto the �rst database the same ube C000 as above, and sends to the seond database the empty ubeC111 = (;; ;; ;). Instead of sharing the harateristi vetors �im , the user will now share three all-ones vetors, whih would automatially satisfy all dislosure onditions and allow the user to learnthe entirety of the eight strings w�. Then, about 3n1=3 physial bits an be reonstruted from theombined answers of the two databases. For instane, for every j 2 [n1=3℄ the user may reonstrutthe bit x(j;i2;i3) by omputing w000� (w100)j� (w010)i2 � (w001)i3 � (w011)1� (w101)1� (w011)1�w111.Observe that in the honest-user SPIR sheme B02, a dishonest user an heat in two ways. Oneway is to improperly share the harateristi vetor of its index (e.g., share the all-ones vetorinstead). The other way is to send invalid B2-queries. This may give the user extra informationeven when the index is properly shared, beause invalid B2-queries an make the output of thereonstrution funtion depend on more than one bit of data. In order to beome resilient todishonest users, any honest-user SPIR sheme an (in priniple) be modi�ed to �lter every originalanswer bit using the onditional dislosure primitive, suh that the ondition tests for the validityof the user's queries. However, the omplexity of dislosing eah answer bit subjet to a full validitytest will be prohibitive. In the next subsetions we use alternative means to transform the bestknown PIR shemes into SPIR shemes. All these transformations involve at most a onstantmultipliative ommuniation overhead.5.1 Cube ShemesIn this subsetion we onstrut, for any onstant k � 2, a k-database SPIR sheme whose ommu-niation omplexity is O(n1=(2k�1)) (as of the best known k-database PIR sheme). We �rst addressthe 2-database ase, from whih we then generalize to a k-database sheme.Theorem 5. There exists a 2-database SPIR sheme, B002 , with ommuniation omplexity andshared randomness omplexity O(n1=3).Proof. Assume that ` = n1=3 is an integer. The sheme B002 proeeds as follows:Queries: The user sends to DB000 the subube C000 = (S01 ; S02 ; S03) and to DB111 the sububeC111 = (S11 ; S12 ; S13), as in the sheme B2. In addition, the user independently shares dense repre-sentations of the index omponents im, m = 1; 2; 3 (as opposed to the unary representation in thesheme B02). This is done by viewing eah index omponent im as an element of Z`, piking randomdlog2 `e-bit elements i0m; i1m 2 Z` suh that i0m + i1m � im (mod `), and sending the three strings i0mto DB000 and the three strings i1m to DB111. 22
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Answers: The answers in B002 are onstruted on top of some intermediate omputations fromthe sheme B02. Reall that b� denotes the answer from database DB� in the basi 3-dimensionalube sheme, a� denotes the answer string orresponding to DB� in the original sheme B2, andw� denotes the strings onstruted by taking the exlusive-or of eah bit in the string a� with thesame random bit r� (these orrespond to messages in a PSM protool for omputing XOR). Lett1; t2; t3 be shared random strings of length ` eah, and u1; u2; u3 be shared random bits (these willbe used as \masks" to guarantee that the user gets no information on x if the sububes it sent arenot onsistent with the index whose binary representation was shared). The databases reply withthe following messages:1. DB000 sends to the user the three bits v0m def= h�S0m; tmi � um, m = 1; 2; 3, where h�; �i denotesinner produt over GF(2). Similarly, DB111 sends the bits v1m def= h�S1m; tmi � um.2. DB000 sends to the user the bit w000. Similarly, DB111 sends the bit w111.3. DB000;DB111 use the SPIR sheme S�2 of Corollary 1 to provide the user with a single bit fromeah of the six `-bit strings w100; w010; w001 (known to DB000), and w011� t1; w101� t2; w110� t3(known to DB111)8, in the positions orresponding to the shared index. This is done by usingthe user's queries i0m; i1m as the queries for the sheme S�2 , where m = 1 for retrieval fromw100 and w011 � t1, m = 2 for retrieval from w010 and w101 � t2, and m = 3 for retrieval fromw001 and w110 � t3. Sine the index retrieved in the sheme S�2 is the sum of the queries toboth databases, this means that the user obtains the bits in position i1 from the �rst pair ofstrings, i2 from the seond pair, and i3 from the third.Reonstrution: An honest user reonstrut xi as follows. For m = 1; 2; 3 the user reonstrutsthe bit (tm)im by omputing v0m � v1m. Then, using these 3 bits and the bits obtained from the S�2invoations, it omputes(t1)i1 � (t2)i2 � (t3)i3 � w000 � w111 � (w011)i1 � (w101)i2 � (w110)i3�(w100 � t1)i1 � (w010 � t2)i2 � (w001 � t3)i3= M�2f0;1g3 b�= xiThe orretness and the user's privay in this sheme are easy to verify. We now show thesheme's data-privay, relative to any user.Lemma 6. Denote by Sbm; ibm, b = 0; 1, m = 1; 2; 3, queries sent by a possibly dishonest user, andlet i�m def= i0m + i1m (mod `). If these queries satisfy S0m � S1m = fi�mg for m = 1; 2; 3 then the answersreveal the bit x(i�1 ;i�2;i�3) and no other information about the data. Otherwise, the answers reveal noinformation about the data.Proof. First, observe that using the random bits um guarantees that for m = 1; 2; 3 the answersv0m; v1m are two uniformly distributed bits satisfying v0m � v1m = h�S0m�S1m ; tmi. Thus if the user is8Reall that in S�2 only one of the two databases needs to know the data, and the other one only needs aess tothe shared random string. 23
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honest then S0m � S1m = fi�mg and so the user an obtain (tm)i�m, but if S0m � S1m 6= fi�mg then themessages (v0m; v1m), m = 1; 2; 3, jointly give no information about (tm)i�m . (Note that in the latterase a user may learn the exlusive-or of the bit (tm)i�m with other bits in tm, but this still gives noinformation on (tm)i�m.)Next, observe that the data privay of the SPIR sheme S�2 guarantees that the user learns asingle physial bit from eah of the six `-bit strings to whih the sheme was applied. Moreover, theposition of this bit orresponds to a shared index omponent i�m. By the properties of the underlyingPSM protool, the only information revealed by these bits is their exlusive-or whih is( M�2f0;1g3 b�)� (t1)i�1 � (t2)i�2 � (t3)i�3 : (3)Altogether, the only information on x the user an obtain is what follows from h�S0m�S1m ; tmi and theoutome of expression (3) above. Now, if S0m�S1m = fi�mg form = 1; 2; 3 thenL�2f0;1g3 b� = x(i�1 ;i�2;i�3),implying that xi�1;i�2;i�3 is the only information on x learned by the user. On the other hand, if S0m �S1m 6= fi�mg for some m, then there exists some m for whih the user gets no information about(tm)i�m, and thus it learns no information about the data.Finally, using Corollary 1 the S�2 invoations an be implemented with a total of O(`) om-muniation omplexity and shared randomness omplexity. Thus, the sheme meets the spei�edomplexity bounds.We note that the SPIR sheme B002 onstruted above is in fat as ommuniation eÆient asthe PIR sheme B2 up to an additive logarithmi overhead.Next, we give a k-database generalization of Theorem 5.Theorem 6. For every onstant k � 2 there exists a k-database SPIR sheme, B00k , with ommu-niation omplexity and shared randomness omplexity O(n1=(2k�1)).Proof. We start by giving a short desription of the PIR sheme Bk from [1℄. Let d = 2k � 1and ` = n1=d. In the sheme Bk, the k databases (denoted DB1; : : : ;DBk) jointly emulate the 2ddatabases of the d-dimensional ube sheme. The sheme proeeds as follows. The user sends toDB1 the subube C0d as in the basi ube sheme, and sends to eah of DB2; : : : ; DBk the sububeC1d. In its answers, DB1 emulates all databases DB� of the original sheme suh that � 2 f0; 1gdis at Hamming distane at most 1 from 0d, similarly to the way suh an emulation is done in thesheme B2. Simultaneously, the remaining databases DB2; : : : ;DBk jointly emulate the remainingdatabases of the original sheme, namely all DB� suh that � ontains at least two 1's. This is doneusing a onstant number (2d � d� 1) of reursive invoations of the sheme Bk�1 between the userand DB2; : : : ;DBk. In eah suh invoation the user retrieves a single bit b� from a virtual datastring, whose entries orrespond to the di�erent sububes possibly sent to DB� in the basi ubesheme (i.e., eah bit of the virtual data strings is the exlusive-or of data bits residing in suh apotential subube). By taking the exlusive-or of the d + 1 bits seleted from the answers of DB1together with the 2d�d�1 bits retrieved by the reursive invoations of Bk�1, the user reonstrutsxi. We now show how to adapt the proof of Theorem 5 to this k-database generalization. Intuitively,we ombine the reursive onstrution outlined above with the tehniques used for onstruting thesheme B002 (of Theorem 5). Note that in B002 eah of the two databases had a role as a \main24
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database" having some information to send to the user, as well as an \auxiliary database" to helpthe other database dislose its own information without revealing any extra information. Similarlyin B00k we will have DB1 be the \main database" in emulating the databases DB� of Hammingdistane at most 1 from 0d in the original ube sheme, and DB2 be the \auxiliary database" forthis purpose. In addition, DB2; : : : ;DBk will reursively emulate the other databases of the originalube sheme, as in the sheme Bk desribed above. We start by desribing the indution assumptionwe will be using, followed by a desription of the sheme.Suppose we have a (k�1)-database SPIR sheme B00k�1 of ommuniation omplexity and sharedrandomness omplexity O(n1=(2k�3)). In this ase we make an additional assumption on B00k�1: weassume that the user is required to ommit to the index being retrieved. This assumption is madepreise in the following way. We say that a 1-round PIR sheme P satis�es the strong data-privayrequirement with parameter d0, if the following onditions hold:1. On a data string x of length n0 = `d0 , the user sends speial queries Q0m; Q1m, 1 � m � d0 (eahof whih is an element of Z`); and2. If a user (possibly a dishonest user) sends queries in whih Q0m +Q1m � i�m (mod `) for eah1 � m � d0, then the answers reveal at most the bit x(i�1 ;:::;i�d0).Notie that strong data-privay implies the usual data-privay. Also note that the sheme B002satis�es this stronger requirement with d0 = 3, as follows from Lemma 6. Our additional assumptionon B00k�1 (whih will be arried on to B00k) is that it satis�es the strong data-privay requirement withd0 = 2(k � 1)� 1 = 2k � 3. The sheme B00k proeeds as follows:Queries: The user sends to DB1 the subube C0d = (S01 ; : : : ; S0d) and to eah of DB2; : : : ;DBkthe subube C1d = (S11 ; : : : ; S1d). In addition, the user independently shares dense representationsof the index omponents im, m = 1; 2; : : : ; d, between DB1 and DB2, using additive shares over Z`as in the sheme B002 . Finally, the user sends the queries neessary for the reursive invoations ofB00k�1 desribed in item 4 below.Answers: As before, let w� denote the strings orresponding to the PSM message strings foremulating database DB� in the d-dimensional ube sheme. For � suh that weight(�) � 2 thesestrings are desribed below, whereas for � of weight 0 or 1 these an be onstruted from the queryC0d exatly as before. In partiular, we onsider wem where em denotes the m-th unit vetor oflength d (note that the databases whose index is in Hamming distane at most 1 from 0d are DB0dand DBem 1 � m � d, and they an be emulated by DB0d as before). Let t1; t2; : : : ; td be sharedrandom strings of length `, and u1; u2; : : : ; ud be shared random bits. The databases reply with thefollowing messages:1. DB1 sends to the user the d bits v0m def= h�S0m ; tmi � um, 1 � m � d. Similarly, DB2 sends thebits v1m def= h�S1m ; tmi � um.2. DB1 sends the bit w0d � s, where s is a shared random bit (to be onditionally dislosed initem 5 below).3. DB1 omputes all `-bit long PSM message strings wem, 1 � m � d, emulating databases DBemin the d-dimensional ube sheme. Then DB1 and DB2 use the SPIR sheme S�2 to providethe user with the bit in position im of eah string wem � tm. Like in the sheme B002 , this isdone by using the shares of im as the queries in S�2 .25
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4. For eah � 2 f0; 1gd suh that weight(�) � 2, the user and the databases DB2; DB3; : : : ; DBkreursively invoke B00k�1 on the virtual data string w� de�ned in the following. Let d0 = d� 2and n0 = `d0 . Let m�z , 1 � z � weight(�), denote the position of the z-th zero in �. Withevery � suh that weight(�) � 2 and tuple i0 = (i01; : : : ; i0d0) 2 [`℄d0 we assoiate a subube C�i0(of the ube [`℄d), whih is obtained from C1d by replaing eah set S1z , 1 � z � weight(�),with the set S1z � im�z . Eah w� is de�ned to be the n0-bit string, whose i0-th bit is equal to theexlusive-or of data bits residing in the subube C�i0 together with the PSM random bit r�. Ina reursive invoation of B00k�1 on the virtual data string w�, the user retrieves the bit whoseindex is represented by the d0-tuple i0� = (im�1 ; im�2 ; : : : ; im�p ; 1; : : : ; 1), where p = weight(�).5. The databases onditionally dislose the shared bit s subjet to a onjuntion of the followingonditions:(a) For every 3 � j � k, the subube sent to DBj is equal to the subube sent to DB2.(b) For every � 2 f0; 1gd suh that weight(�) � 2, the index i0 shared by the user in theinvoation of B00k�1 on w� (in aordane with the strong data-privay assumption madeon B00k�1) is equal to i0�. This an be veri�ed by omparing eah omponent of i0 with theorresponding omponent of i as shared by the user.(For eÆiently dislosing s under the onjuntion of all these onditions, the databases maywrite s as the exlusive-or of several independent random bits, and dislose eah of these bitssubjet to a single ondition of equality between two strings).Reonstrution: The user reonstruts xi by reursively reonstruting the bits retrieved viaB00k�1, and taking their exlusive-or with all other bits dislosed to the user.We start by analyzing the ommuniation and shared randomness omplexity. By Lemma 3 andCorollary 1, the onditional dislosure of the bit s and the SPIR retrievals from the strings wem� tman be implemented with O(`) ommuniation and shared randomness omplexity, for a onstantk. Thus, by indution (using B002 as basis) the ommuniation omplexity is k(n) = O(`) + (2d �d � 1) � k�1(`d�2) = O(`) = O(n1=(2k�1)), and similarly the shared randomness omplexity is alsoO(n(1=(2k�1)).The orretness and the user's privay an be easily veri�ed. It remains to show that thestrong data-privay requirement also holds for B00k . We argue that if the user ommits to an indexi = (i1; : : : ; id) (by sharing its omponents between DB1 and DB2), then it an learn at most thebit xi. As in the B002 sheme, an honest user learns xi alone. In order to learn some informationinvolving other bits, a dishonest user must deviate from the sheme's spei�ation either by sendingto DB1; : : : ;DBk sububes whih don't meet the requirements imposed by i, or by trying to retrievefrom the reursive invoations of B00k�1 di�erent bits than those orresponding to i. The spei�eddislosure onditions, the data privay of S�2 , and the strong data-privay assumption made on B00k�1guarantee that in both of these ases, the user will learn no information at all.5.2 A Polynomial Interpolation Based ShemeIn this setion we prove that the polynomial interpolation based PIR sheme for k = dlog2 n + 1edatabases from [12℄ (see also [3℄) an be transformed into a SPIR sheme with the same number ofdatabases and a onstant fator of ommuniation and randomness overhead.26
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Theorem 7. There exists a dlog2 n+ 1e-database SPIR sheme, with ommuniation omplexityand shared randomness omplexity O(log2 n � log logn).Proof. We start by desribing the underlying PIR sheme, whih is based on the method oflow-degree polynomial interpolation (see [3, 12℄ for more details). Assume without loss of generalitythat n = 2s, where s is a positive integer, and let k = s+1 be the number of databases. Let GF(q) bea �nite �eld with at least k+1 elements, and �j, 1 � j � k, be distint, nonzero elements of GF(q).With every index i 2 [n℄ we assoiate an s-tuple ~i = (i1; i2; : : : ; is) 2 f0; 1gs, orresponding to thebinary representation of i. For eah data string x 2 f0; 1gn, let px(y1; : : : ; ys) denote a multivariatedegree-s polynomial suh that px(~i) = xi for every i 2 [n℄ (suh px may be taken to be the multilinearextension of the funtion f(~i) def= xi). The user piks a random s-tuple ~ = (1; : : : ; s) 2 GF(q)s,and sends to eah database DBj, 1 � j � k, the query ~uj = �j � ~ +~i. Eah database DBj replieswith a single �eld element aj def= px(~uj). The user reonstruts xi by interpolation: if p0 is theunique degree-s univariate polynomial (over GF(q)) suh that p0(�j) = aj for every 1 � j � k, thenxi = p0(0). The ommuniation omplexity of this sheme is O(log2 n log logn).As noted in Subsetion 4.3, the linearity of the reonstrution funtion (interpolation) allowsto obtain a PSM-based honest-user SPIR sheme with the same ommuniation omplexity. Toprevent a dishonest user from obtaining any illegitimate information on x, we require the user toprove that its queries are onsistent with some~i 2 f0; 1gs and ~ 2 GF(q)s. Suh a proof will onsistof sharing eah entry of ~ and ~i, and its validation will onsist of verifying that ~i 2 f0; 1gs and that~uj = �j � ~+~i for eah 1 � j � k.We begin with the following observation, whih also yields a slight improvement to the originalPIR sheme desribed above. Note that the user reonstruts xi by omputing some �xed linearombination over GF(q) of the k �eld elements replied by the databases. Thus, as a �rst step,we an let eah database multiply its original answer by the orresponding oeÆient, so thatreonstrution will onsist of omputing the sum of all answers over GF(q). Then, if q is hosen tobe a power of 2 (q = 2dlog2(k+1)e suÆes), it is enough for the databases to reply only with the \leastsigni�ant bit" of eah answer, and for the user to reonstrut xi by taking the exlusive-or of thek answer bits. From now on we refer to this modi�ed sheme. The orresponding SPIR sheme weonstrut is formally desribed as follows:Queries: The user sends to eah database DBj a query ~uj as in the original sheme. In addition,the user piks random tuples ~i0;~i1;~0;~1 2 GF(q)s suh that ~i0 +~i1 =~i and ~0 + ~1 = ~, and sends~i0;~0 to DB1 and ~i1;~1 to eah of DB2; : : : ;DBk.Answers: Let r1; r2; : : : ; rk be independent random bits (inluded in the databases' shared ran-domness), and let r denote their exlusive-or. Eah database DBj replies with a0j def= aj � rj, whereaj is its answer aording to the modi�ed sheme. In addition, the databases use their sharedrandomness to dislose the bit r, subjet to a onjuntion of the following onditions: (1) for every3 � j � k, the shares of ~i and ~ sent to DBj are idential to those sent to DB2; (2) for every1 � m � s, either i0m + i1m = 0 or i0m + i1m = 1 (where ibm denotes the m-th entry of the b-th shareof ~i); and �nally (3) for every 1 � j � k and 1 � m � s, �j(0m + 1m) + (i0m + i1m) = ujm. Notethat the above ondition may be expressed by a Boolean formula over O(ks) = O(log logn) atomionditions, eah testing equality between two elements of GF(q) known to two di�erent databases.For instane, if j > 1 then verifying the ondition �j(0m + 1m) + (i0m + i1m) = ujm is equivalent toomparing �j0m + i0m, whih is known to DB1, and ujm� �j1m� i1m, whih is known to DBj. Using27
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Theorem 2, the onditional dislosure of r an be implemented with ommuniation omplexity andshared randomness omplexity of O(log2 n � log logn).Reonstrution: The user reonstruts r, and omputes xi as the exlusive-or of a01; : : : ; a0k andr. The orretness and the user's privay of the original sheme are learly maintained. To see thedata-privay of this sheme, onsider two possible ases. If the user's queries are valid, then thetuple (a01; a02; : : : ; a0k; r) is uniformly distributed among all (k + 1)-tuples over GF(2) whih add upto xi, implying that the answer distribution depends only on xi. Otherwise, the user obtains noinformation on r, and onsequently a01; : : : ; a0k (whih are uniformly and independently distributedover GF(2)) are independent of the onditional dislosure messages. It follows that in the latterase the user obtains no information on x.Exluding the onditional dislosure of r, the ommuniation omplexity of the sheme is dom-inated by the query omplexity, whih is O(log2 n � log logn). Together with the omplexity ofdislosing r, whih is disussed above, the entire sheme requires O(log2 n � log logn) ommunia-tion and shared randomness bits.6 Conlusion and ExtensionsWe have presented a methodology whih allows to implement ommuniation eÆient SPIR shemes,requiring only one round of interation and withstanding any dishonest behavior of the user. Thismethodology may be useful for dealing with other variants of the basi PIR question, as we demon-strate in this setion, as well as in other ryptographi senarios. In the following we show how toextend our results in two diretions: dealing with retrieval of bloks instead of single-bit reords;and dealing with t-privay, namely privay against oalitions of up to t olluding databases. Wealso present an appliation whih using our methodology for SPIR, and in partiular the ondition-al dislosure of serets primitive, an be implemented quite eÆiently. This appliation, termedprivate retrieval with osts, allows a user to privately retrieve (in a single round) any olletion ofdata items, provided that their total ost does not exeed what it had previously paid for.6.1 Blok Retrieval SPIR shemesSo far, we have restrited our attention to retrieval of single bits rather than multi-bit reords, alsoreferred to as bloks. In this subsetion we show how results from the previous setions an beextended to yield blok-retrieval SPIR shemes.We start by observing that for PIR shemes generality is not lost when only single bit retrievalis onsidered: any PIR sheme for single bit retrieval may simply be invoked ` times in parallelto retrieve a blok of ` bits. However this argument does not arry on to SPIR shemes, beausea heating user may invoke the sheme on ` bits whih do not belong to the same reord, thusobtaining information about more than one physial blok. Therefore, we desribe a modi�ationof the above proedure whih works for single round SPIR shemes.Given a single round SPIR sheme where the user an retrieve a single bit out of the n-bit datastring, one an onstrut a (single round) SPIR sheme to retrieve an `-bit reord from a data stringof n suh reords as follows: the user sends queries as in the original bit-retrieval sheme, and the28
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databases reply ` times to the user's queries, one for eah bit of the reord. Eah suh reply allowsthe user to learn a single bit of the seleted reord, and sine the user generates queries only oneit is guaranteed that the ` bits that it learns indeed form a single reord of the database.The above transformation from single-bit to multi-bit retrieval is not appliable for multi-roundSPIR shemes, sine the same set of queries annot be used multiple times for di�erent reord bits(queries for eah bit must depend on replies reeived in previous rounds). On the other hand, formulti-round shemes, our general PIR to SPIR transformation of Setion 3 may be extended towork for multi-bit blok retrieval, by letting eah entry of the shared random string r onsist of `bits instead of a single bit. The protools and their proofs an be modi�ed in a straightforwardway to support this extension. In addition, note that all our spei� SPIR shemes (Setions 4,5)are single round, and thus may be used for blok retrieval by the above transformation. This isalso true for our general SPIR sheme (Setion 3), when used with an underlying single round PIRsheme (whih is the ase for most PIR shemes known in the literature).6.2 t-private SPIR shemesIn the general redution desribed in Setion 3, even if the original PIR sheme P is t-private forsome t > 1, the resultant SPIR sheme SP will still only be 1-private. This is beause if DB0olludes with any other database DBj, the joint view of these two olluding databases inludesboth the shift � and the shifted index i0 = (i��)modn, from whih the user's index i an easilybe reovered. Generalizing the onstrution of SP , a t-private SPIR sheme StP an be obtainedfrom any t-private PIR sheme P as follows. Instead of diretly asking DB0 for the (i��)-th bit ofthe shared random string r, the user an retrieve this bit by reursively invoking the (t� 1)-privateSPIR sheme St�1P with a \fresh" set of databases. As a basis S0P for this reursion, we may takethe trivial 1-database sheme in whih the user expliitly asks for the desired index. In partiular,the (k + 1)-database 1-private sheme desribed in Setion 3 may be viewed as the seond level ofthe reursion. In general, for any t-private k-database PIR sheme P, applying this reursion yieldsa t-private (kt+ 1)-database SPIR sheme SP whose ommuniation omplexity is roughly t timesthat of our original (1-private) sheme.In the following generalization of Theorem 3 we show that the number of databases in the t-private SPIR sheme an be redued to k + t, at the expense of inreasing ommuniation by afator of �k+t�1t�1 �.Theorem 8. Let P be any 1-round, k-database, t-private PIR sheme with ommuniationomplexity (�k(n); �k(n)). Then, there exists a 1-round, (k+t)-database, t-private SPIR shemeSP with ommuniation omplexity (O(m(�k(n) + dlog2 ne); O(m�k(n))) and shared randomnessomplexity O(mn), where m = �k+t�1t�1 �.Proof. A t-private SPIR sheme SP using K = k + t databases DB1; : : : ;DBK is desribed inthe following. The onstrution uses a olletion F = fS1; : : : ; Sm; Sm+1g � 2[K℄ of database setssuh that:� Sm+1 is a singleton;� eah other set Sh, 1 � h � m, is of size k;� for any set T � [K℄ of size t, there exists a set S 2 F suh that T \ S = ;.29
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Suh F exists with m = �k+t�1t�1 �. E.g., let Sm+1 = fKg, and for any subset T � [K℄ of size t suhthat K 2 T , let ST = [K℄ n T . 9An honest-user SPIR sheme an now proeed as follows (where all ations are performed usingone round of ommuniation):� The user U piks m random shift amounts �1;�2; : : : ;�m 2 Zn;The databases hold m shared random strings r1; : : : ; rm, of length n eah, and let r0 = xdenote the data string.� For 1 � j � m, U sends �j to eah database in Sj, and invokes the PIR sheme P withdatabase set Sj to privately retrieve the bit bj in position ij def= i � Pj�1h=1�j (mod n) ofrj�1 � (rj >> �j). (Notie that in partiular, i1 = i);� U expliitly asks the single database in Sm+1 for the bit bm+1 in position im+1 def= i �Pmh=1�h (mod n) of rm;� U reonstruts xi by taking the exlusive-or of the m+ 1 bits b1; : : : ; bm; bm+1.We now show that the sheme is orret, and that it satis�es both privay requirements. Itfollows by indution that for h = 1; 2; : : : ; m, b1 � b2 � � � � � bh = xi � (rh)ih+1, and so (b1 � b2 �� � � � bm)� bm+1 = (xi � (rm)im+1)� bm+1 = xi. This proves the orretness of the sheme.To prove the user's privay, onsider the view of a ollusion T of t databases. Sine P is t-private, invoations of P involving members of T do not dislose any information about i. The onlypotential soure of information about i are those messages from the set f�1;�2; : : : ;�m; im+1g thatare viewed by members of T . However, the de�nition of F guarantees that the ollusion T will onlyview a proper subset of these messages, whih ontains no information on i.To prove the data-privay (against an honest user), it suÆes to show that given any shiftamounts �1; : : : ;�m and position im+1 piked by the user, the random variable�x� (r1 >> �1); r1 � (r2 >> �2); r2 � (r3 >> �3); : : : ; rm�1 � (rm >> �m); (rm)im+1� ;where the strings r1; : : : ; rm are uniformly and independently distributed over f0; 1gn, depends onlyon the single data bit xi, where i = im +P�h. This an be proved by iterating the argument usedin the proof of Theorem 1. Letting r0 = x, it an be shown by bakward indution on h that forh = m�1; m�2; : : : ; 0, the joint distribution (rh�(rh+1 >> �h+1); rh+1�(rh+2 >> �h+2); : : : ; rm�1�(rm >> �m); (rm)im+1) is independent of rh given (rh)ih, where ih = im+1 + �m + �m�1 + : : : +�h+1 (mod n). In partiular, for i = 0 we obtain the desired result.Finally, the same onditional dislosure mehanism used in the proof of Theorem 3 an be usedhere as well to guarantee data-privay against any (possibly dishonest) user. Spei�ally, in anyinvoation of P involving database set Sh, eah answer should be dislosed subjet to the onditionthat all orresponding shift amounts sent by the user are equal. The above analysis shows that thissuÆes to guarantee data-privay.Aside from the onditional dislosure protool, the ommuniation in the resultant sheme SPinvolves m invoations of the sheme P, m extra logn-bit query strings, and one extra answer bit.9It is not hard to observe that the desribed F is of minimal ardinality, and that it annot exist at all for Ksmaller than k + t. However, by inreasing the number of databases K, the ardinality of F an be dereased. Forinstane, m an be made as low as t when K = tk + 1, orresponding to the reursive sheme desribed above.30
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The onditional dislosure protool indues a onstant multipliative ommuniation and sharedrandomness overhead. This gives the ommuniation and randomness bounds stated in the theorem.6.3 Private Retrieval with CostsIn this subsetion we briey sketh how the onditional dislosure of serets methodology an beused together with an underlying SPIR sheme to implement private retrieval with osts.Let i1; : : : ; im denote the indies of the data reords whih the user wishes to retrieve,10  denotea publi vetor of `-bit integral osts (an n-tuple whose i-th entry i ontains a binary representationof the ost of the i-th data reord (0 � i � 2`� 1)), and p denote a publi ost threshold (i.e., theamount of money paid by the user). A sheme for private retrieval with osts allows the user toretrieve the data reords indexed by i1; : : : ; im privately (namely without giving the database anyinformation about i1; : : : ; im), provided that Pmh=1 ih � p (i.e. the total ost of the reords does notexeed the amount pre-paid by the user); on the other hand, it should not allow the user to obtainany information whih does not follow from suh valid set of reords.The following is a high-level desription of a generi implementation of suh a sheme, usingan underlying (1-round) SPIR sheme S. Without loss of generality (but possibly with a smallomplexity overhead), we may assume that the reonstrution funtion applied by the user in Sdepends on the answers alone, and not on the index i or its random input �. (See Remark 3; also,notie that this is already the ase with the shemes B00k onstruted in Setion 5.) The sheme anthen proeed as follows.Queries: The user hooses independently, for eah desired retrieval index ih of x (1 � h � m), a k-tuple of queries aording to the sheme S. It sends to eah of the k databases the m orrespondingmessages (all in parallel).Answers: Eah database loally omputes two answers to eah of the user's queries: one byonsidering x as the data string, and the other by onsidering the ost vetor  as the data string(more preisely,  is onsidered as ` n-bit vetors and the ` answers an be used to onstrut the `-bit entry ih). Then, the databases onditionally dislose their x-answers subjet to an appropriateondition on the -answers. That is, the ondition on the -answers should assert that the sumof the osts reonstruted from these answers (eah of whih an be obtained by applying thereonstrution funtion of S) is no larger than the publi threshold p.The omplexity of realizing onditional dislosure as above an be kept low in the following ways.First, it is better to use an underlying sheme S whose reonstrution funtion is omputationallyeasy (this is the ase with the shemes onstruted in this paper). Seond, it is possible to failitatethe realization of dislosures under \ompliated" onditions by requiring the user to send a witnessto the validity of its queries, whih will serve as an additional input to the ondition. In this setting,the general upper bounds given in Theorem 2 an be extended to apply to nondeterministi formulasor span programs, yielding eÆient onditional dislosure protools whenever the ondition an beomputed by an eÆient iruit. Indeed, letting the witness supplied by the user onsist of allintermediate gate values, it is possible to verify that the iruit evaluates to 1 using a Boolean10m will be dislosed to the database as an upper bound on the number of data reords that the user wishes toretrieve. If the user wants to retrieve less than m reords, the rest of the indies will point to a dummy reord ofost 0. 31
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A Neessity of Shared RandomnessA.1 Shared Randomness is Neessary for SPIRIn this setion we show that the addition of a shared randomness resoure to the basi PIR settingis in a sense minimal.Suppose we allow the databases to use private randomness in answering the user's queries, butwe still do not allow them to interat without the mediation of the user (and in partiular we donot allow them to share a random string unknown to the user). We argue that in this setting,(information-theoreti) SPIR annot be implemented at all, regardless of its omplexity, even whenthe user is honest.Claim 2. There exists no (multi-round) k-database SPIR sheme without diret interationbetween di�erent databases, even if the databases are allowed to hold private and independentrandom inputs, and the user is honest.Proof. Sine the user's view inludes all of the ommuniation, the strong privay requirementimplies that any single database DBj annot respond to the user's queries in a way that dependson the data string x. Formally, at any round the distribution of DBj's answer given the previousommuniation annot depend on x. For otherwise, this answer distribution must either not followfrom a single bit xi, thus violating the data-privay requirement, or alternatively reveal to DBjthe index i on whih it depends, thus violating the user's privay. The independene of privaterandom inputs held by di�erent databases implies that given previous ommuniation the answersof di�erent databases must be independently distributed. Combining the observations made abovewe have that the joint distribution of all k answers given previous ommuniation is independentof x. Fixing an index i, it follows by indution on the number of rounds that for any w > 0 theaumulated ommuniation in the �rst w rounds is distributed independently of x. This impliesthat the user's output annot depend on the value of xi, ontraditing the orretness requirement.As a speial ase of Claim 2 we may onlude the following:Corollary 2. There exists no single-database (information-theoreti) SPIR sheme.We note that Corollary 2 an also be derived from known results about two-party omputation[13, 22, 2℄.A.2 Shared Randomness in General Redution from SPIR to PIRWe have shown above that the resoure of shared randomness is neessary in order for SPIR to beahievable. In Setion 3 we have presented general transformations from PIR to SPIR using linearshared randomness, and in Setions 4 and 5 spei� transformations using about the same sharedrandomness as the ommuniation omplexity.A natural question onerning the general transformations is whether their shared randomnessomplexity an be redued, possibly as a funtion of their ommuniation omplexity. We nowargue that if we want the general redution to apply to any PIR sheme, then its shared randomnessomplexity (in the information-theoreti honest user ase) is in a sense minimal; that is, the uniform34
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distribution on f0; 1gn from whih the shared random string is hosen annot be replaed by adistribution on f0; 1gn whose entropy is less than n. It is straightforward to observe that this isthe ase with the trivial 1-database PIR sheme in whih the database sends the entire data stringto the user; the following laim indiates that this is also the ase for PIR shemes with arbitrarilysmall ommuniation omplexity.Claim 3. Any PIR sheme of whih one answer bit gives the Boolean \OR" of all data bitsrequires the shared random string r in the sheme of Theorem 1 to be uniformly distributed overf0; 1gn.Proof. Let R denote the distribution on f0; 1gn from whih r is piked, and suppose that R isnot uniform; for n � 2, it easily follows that there exist y; y0 2 f0; 1gn and an index i 2 [n℄ suh thatyi = y0i, and Pr[R = y℄ 6= Pr[R = y0℄. Let SRP denote the sheme SP onstruted in the proof ofTheorem 1 with the shared random string r distributed aording to R, and onsider an invoationof SRP in whih the user's retrieval index is i and the spei�ed shift is � = 0. Now, observe that inthis invoation the user an distinguish between the data strings y and y0, asPr[ _j2[n℄(y � R)j = 0℄ = Pr[R = y℄6= Pr[R = y0℄ = Pr[ _j2[n℄(y0 �R) = 0℄:By the orretness of SRP , the user must also learn the i-th data bit, implying that it obtains morethan a single physial bit of data.
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